Dissociative electron attachment to dialanine and alanine anhydride has been studied in the gas phase utilizing a double focusing two sector field mass spectrometer. We show that low-energy electrons (i.e., electrons with kinetic energies from near zero up to 13 eV) attach to these molecules and subsequently dissociate to form a number of anionic fragments. Anion efficiency curves are recorded for the most abundant anions by measuring the ion yield as a function of the incident electron energy. The present experiments show that as for single amino acids (M), e.g., glycine, alanine, valine, and proline, the dehydrogenated closed shell anion (M–H) is the most dominant reaction product. The interpretation of the experiments is aided by quantum chemical calculations based on density functional theory, by which the electrostatic potential and molecular orbitals are calculated and the initial electron attachment process prior to dissociation is investigated.

1.
A. R.
Goldfarb
,
L. J.
Saidel
,
E.
Mosovich
,
J. Biol. Chem.
193
,
397
(
1951
).
2.
T. G.
Oas
and
P. S.
Kim
,
Nature (London)
336
,
42
(
1988
).
3.
P.
Chaudhuri
and
S.
Canuto
,
J. Mol. Struct.: THEOCHEM
577
,
267
(
2002
).
4.
A. G.
Császár
and
A.
Perczel
,
Prog. Biophys. Mol. Biol.
71
,
243
(
1999
).
5.
W. D.
Cornell
,
I. R.
Gould
, and
P. A.
Kollman
,
J. Mol. Struct.: THEOCHEM
392
,
101
(
1997
).
6.
I. K.
Roterman
,
M. H.
Lambert
,
K. D.
Gibson
, and
H. A.
Scheraga
,
J. Biomol. Struct. Dyn.
7
,
421
(
1989
).
7.
B. M.
Pettitt
and
M. J.
Karplus
,
Chem. Phys. Lett.
121
,
194
(
1985
).
8.
A.
Solov'yov
,
A. V.
Yakubovich
, and
W.
Greiner
,
J. Exp. Theor. Phys.
103
,
463
(
2006
).
9.
M.
Kohtani
,
G. A.
Breaux
, and
M. F.
Jarrold
,
J. Am. Chem. Soc.
126
,
1206
(
2004
).
10.
D. F.
Regulla
and
U.
Deffner
,
Int. J. Appl. Radiat. Isot.
33
,
1101
(
1982
).
11.
M. Z.
Heydari
,
E.
Malinen
,
E. O.
Hole
, and
E.
Sagstuen
,
J. Phys. Chem. A
106
,
8971
(
2002
).
12.
V.
Nagy
,
J. M.
Puhl
, and
M. F.
Desrosiers
,
Radiat. Phys. Chem.
57
,
1
(
2000
).
13.
S.
Ebraheem
,
W. B.
Beshira
,
S.
Eid
,
R.
Sobhy
, and
A.
Kovacs
,
Radiat. Phys. Chem.
67
,
569
(
2003
).
14.
M. S.
Walczak
,
K.
Lawniczak-Jablonska
,
A.
Sienkiewicz
,
M.
Czuba
,
M.
Klepka
, and
A.
Graczyk
,
J. Phys.: Condens. Matter
19
,
285214
(
2007
).
15.
M.
Karas
and
F.
Hillenkamp
,
Anal. Chem.
60
,
2299
(
1988
).
16.
F.
Hillenkamp
and
M.
Karas
,
Int. J. Mass. Spectrom.
200
,
71
(
2000
).
17.
M.
Karas
,
U.
Bahr
,
I.
Fournier
,
M.
Gluckmann
, and
A.
Pfenninger
,
Int. J. Mass. Spectrom.
226
,
239
(
2003
).
18.
M.
Wind
and
W.
Lehmann
,
J. Anal. At. Spectrom.
19
,
20
(
2004
).
19.
S. Brøndsted
Nielsen
,
J. U.
Andersen
,
P.
Hvelplund
,
B.
Liu
, and
S.
Tomita
,
J. Phys. B: At. Mol. Opt. Phys.
37
,
R25
(
2004
).
20.
J. B.
Fenn
,
M.
Mann
,
C. K.
Meng
,
S. F.
Wong
, and
C. M.
Whitehouse
,
Science
246
,
64
(
1989
).
21.
B.
Lucas
,
G.
Grégoire
,
J.
Lemaire
,
P.
Maitre
,
J. M.
Ortega
,
A.
Rupenyan
,
B.
Reimann
,
J. P.
Schermann
, and
C.
Desfrancois
,
Phys. Chem. Chem. Phys.
6
,
2659
(
2004
).
22.
J.
Laskin
,
E.
Denisov
, and
J. H.
Futrell
,
J. Am. Chem. Soc.
122
,
9703
(
2000
).
23.
M. J.
Polce
,
D.
Ren
, and
C.
Wesdemiotis
,
J. Mass Spectrom.
35
,
1391
(
2000
).
24.
F.
Rogalewicz
,
Y.
Hoppilliard
, and
G.
Ohanessian
,
Int. J. Mass Spectrom.
195
,
565
(
2000
).
25.
J.
Laskin
and
J. H.
Futrell
,
J. Chem. Phys.
116
,
4302
(
2002
).
26.
J.
Wang
,
S. O.
Meroueh
,
Y.
Wang
, and
W. L.
Hase
,
Int. J. Mass Spectrom.
230
,
57
(
2003
).
27.
S. C.
Nanita
and
R. G.
Cooks
,
Angew. Chem., Int. Ed.
45
,
554
(
2006
).
28.
R. G.
Cooks
,
D. X.
Zhang
,
K. J.
Koch
,
F. C.
Gozzo
, and
M. N.
Eberlin
,
Anal. Chem.
73
,
3546
(
2001
).
29.
F. Ferreira da
Silva
,
P.
Bartl
,
S.
Denifl
,
T. D.
Märk
,
A. M.
Ellis
, and
P.
Scheier
,
Chem. Phys. Chem.
11
,
90
(
2010
).
30.
F. Ferreira da
Silva
,
S.
Denifl
,
T. D.
Märk
,
A. M.
Ellis
, and
P.
Scheier
,
J. Chem. Phys.
132
,
214306
(
2010
).
31.
S.
Denifl
,
I.
Mähr
,
F. Ferreira da
Silva
,
F.
Zappa
,
T. D.
Märk
, and
P.
Scheier
,
Eur. Phys. J. D
51
,
73
(
2009
).
32.
Y. V.
Vasil'ev
,
B. J.
Figard
,
J.
Morré
, and
M. L.
Deinzer
,
J. Chem. Phys.
131
,
044317
(
2009
).
33.
S.
Geddes
,
J.
Zahardis
,
J.
Eisenhauer
, and
G. A.
Petrucci
,
Int. J. Mass Spectrom.
282
,
13
(
2009
).
34.
S.
Denifl
,
H. D.
Flosadóttir
,
A.
Edtbauer
,
O.
Ingólfsson
,
T. D.
Märk
, and
P.
Scheier
,
Eur. Phys. J. D
60
,
37
(
2010
);
P.
Sulzer
,
E.
Alizadeh
,
A.
Mauracher
,
T. D.
Märk
, and
P.
Scheier
,
Int. J. Mass Spectrom.
277
,
274
(
2008
);
S.
Ptasińska
,
S.
Denifl
,
P.
Candori
,
S.
Matejcik
,
P.
Scheier
, and
T. D.
Märk
,
Chem. Phys. Lett.
403
,
107
(
2005
);
S.
Ptasińska
,
S.
Denifl
,
A.
Abedi
,
P.
Scheier
, and
T. D.
Märk
,
Anal. Bioanal. Chem.
377
,
1115
(
2003
).
[PubMed]
35.
S.
Gohlke
,
A.
Rosa
,
E.
Illenberger
,
F.
Brüning
, and
M. A.
Huels
,
J. Chem. Phys.
116
,
10164
(
2002
);
J.
Kopyra
and
H.
Abdoul-Carime
,
J. Chem. Phys.
132
,
204302
(
2010
);
[PubMed]
H.
Abdoul-Carime
,
C.
König-Lehmann
,
J.
Kopyra
,
B.
Farizon
,
M.
Farizon
, and
E.
Illenberger
,
Chem. Phys. Lett.
477
,
245
(
2009
).
36.
J.
Kocicek
,
P.
Papp
,
P.
Mach
,
Y. V.
Vasil'ev
,
M. L.
Deinzer
, and
S.
Matejcik
,
J. Phys. Chem. A
114
,
1677
(
2010
).
37.
Y. V.
Vasil'ev
,
B. J.
Figard
,
V. G.
Voinov
,
D. F.
Barofsky
, and
M. L.
Deinzer
,
J. Am. Chem. Soc.
128
,
5506
(
2006
).
38.
H. D.
Flosadóttir
,
S.
Denifl
,
F.
Zappa
,
N.
Wendt
,
A.
Mauracher
,
A.
Bacher
,
H.
Jónsson
,
T. D.
Märk
,
P.
Scheier
, and
O.
Ingólfsson
,
Angew. Chem., Int. Ed.
46
,
8057
(
2007
).
39.
M. B.
Martins
and
I.
Carvalho
,
Tetrahedron
63
,
9923
(
2007
).
40.
A. D.
Hendricker
and
K. J.
Voorhees
,
J. Anal. Appl. Pyrolysis
36
,
51
(
1996
).
41.
D.
Huber
,
M.
Beikircher
,
S.
Denifl
,
F.
Zappa
,
S.
Matejcik
,
A.
Bacher
,
V.
Grill
,
T. D.
Märk
, and
P.
Scheier
,
J. Chem. Phys.
125
,
084304
(
2006
).
42.
E.
Illenberger
and
J.
Momigny
, Eds.,
Gaseous Molecular Ions
,
An Introduction to Elementary Processes Induced by Ionization
(
Steinkopff: Darmstadt
/Springer
:
New York
,
1992
).
43.
H. J.
Svec
and
G. A.
Junk
,
J. Am. Chem. Soc.
86
,
2278
(
1964
).
44.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
45.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
46.
K.
Raghavachari
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
47.
M. J.
Frisch
,
G. W.
Trucks
,
H B.
Schlegel
 et al 
GAUSSIAN 03, Revision C.02
,
Gaussian, Inc.
,
Wallingford, CT
,
2004
.
48.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
110
,
4703
(
1999
).
49.
G. A.
Gallup
,
P. D.
Burrow
, and
I. I.
Fabrikant
,
Phys. Rev. A
79
,
042701
(
2009
).
50.
A. M.
Scheer
,
P.
Mozejko
,
G. A.
Gallup
, and
P. D.
Burrow
,
J. Chem. Phys
126
,
174301
(
2007
).
51.
R.
Abouaf
,
Chem. Phys. Lett.
451
,
25
(
2008
).
52.
Y. V.
Vasil'ev
,
B. J.
Figard
,
D. F.
Barofsky
, and
M. L.
Deinzer
,
Int. J. Mass. Spectrom.
268
,
106
(
2007
).
53.
P. V.
Shchukin
,
M. V.
Muftakhov
,
J.
Morre
,
M. L.
Deinzer
, and
Y. V.
Vasil'ev
,
J. Chem. Phys.
132
,
234306
(
2010
).
54.
M.
Sobczyk
,
I.
Anusiewicz
,
J.
Berdys-Kochanska
,
A.
Sawicka
,
P.
Skurski
, and
J.
Simons
,
J. Phys. Chem. A
109
,
250
(
2005
).
55.
P.
Hvelplund
,
B.
Liu
,
S. Brøndsted
Nielsen
,
S.
Panja
,
J. C.
Poully
, and
K.
Støchkel
,
Int. J. Mass Spectrom.
263
,
66
(
2007
).
56.
P.
Papp
,
J.
Urban
,
S.
Matejcik
,
M.
Stano
, and
O.
Ingólfsson
,
J. Chem. Phys.
125
,
204301
(
2006
).
57.
CRC
,
Handbook of Chemistry and Physics
, 83rd ed.
CD-Rom
.
58.
Nist Chemistry Webbook, available from http://www.webbook.nist.gov/chemistry/.
59.
C.
Koenig-Lehmann
,
J.
Kopyra
,
I.
Dąbkowska
,
J.
Kočišek
, and
E.
Illenberger
,
Phys. Chem. Chem. Phys.
10
,
6954
(
2008
).
You do not currently have access to this content.