We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH3C(O)CH2 radicals formed from C–Cl bond fission. In addition to the C–Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C–C bond fission to produce CH3CO and CH2Cl. The CH3C(O)CH2 radical formed from C–Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH3 + ketene. The 193 nm photodissociation laser allows us to produce these CH3C(O)CH2 radicals with enough internal energy to span the dissociation barrier leading to the CH3 + ketene asymptote. Therefore, some of the vibrationally excited CH3C(O)CH2 radicals undergo subsequent dissociation to CH3 + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C–C bond photofission channel that produces CH3 and COCH2Cl fragments. The CH3C(O)CH2 radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C–Cl bond fission transition state on the S1 surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck–Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH3 + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models.

1.
A. S.
Raman
,
M. J.
Bell
,
K. -C.
Lau
, and
L. J.
Butler
,
J. Chem. Phys.
127
,
154316
(
2007
).
2.
J. B.
Burkholder
,
M. K.
Gilles
,
T.
Gierczak
, and
A. R.
Ravishankara
,
Geophys. Res. Lett.
29
,
1822
(
2002
).
3.
G. C.
Waschewsky
,
P. W.
Kash
,
T. L.
Myers
,
D. C.
Kitchen
, and
L. J.
Butler
,
J. Chem. Soc., Faraday Trans.
90
,
1581
(
1994
).
4.
D. C.
Kitchen
,
T. L.
Myers
, and
L. J.
Butler
,
J. Phys. Chem.
100
,
5200
(
1996
).
5.
Y. T.
Lee
,
J. D.
McDonald
,
P. R.
LeBreton
, and
D. R.
Herschbach
,
Rev. Sci. Instrum.
40
,
1402
(
1969
).
6.
N. R.
Daly
,
Rev. Sci. Instrum.
31
,
264
(
1960
).
7.
See supplementary material at http://dx.doi.org/10.1063/1.3525465 for the G3//B3LYP/aug-cc-pVTZ energies at 0 K geometries, and the vibrational frequencies of the important minima and transition states on the OH + allene potential energy surface used to estimate the importance of the CH3 + ketene product channels under conditions of an atmosphere of pressure of N2 (and some additional details on that estimate). It also gives supplemental imaging and scattering data and details on how the rotational energy in the nascent radicals is estimated.
8.
B. L.
FitzPatrick
, “Theoretical study of isomerization and dissociation transition states of C3H5O radical isomers: Ab initio characterization of the critical points and statistical transition state theory modeling of the dynamics,” J. Phys. Chem. A (submitted).
9.
B. W.
Alligood
,
C. C.
Womack
, and
L. J.
Butler
, “Dissociative photoionization of CH3C(O)CH2 to C2H5+,” Int. J. Mass. Spectrom. (submitted, 2011).
10.
A. J. R.
Heck
and
D. W.
Chandler
,
Annu. Rev. Phys. Chem.
46
,
335
(
1995
).
11.
A. T. J. B.
Eppink
and
D. H.
Parker
,
Rev. Sci. Instrum.
68
,
3477
(
1997
).
12.
Y.
Sato
,
Y.
Matsumi
,
M.
Kawasaki
,
K.
Tsukiyama
, and
R.
Bersohn
,
J. Phys. Chem.
99
,
16307
(
1995
).
13.
Y.
Liu
, and
L. J.
Butler
,
J. Chem. Phys.
121
,
11016
(
2004
).
14.
B. J.
Ratliff
,
X. N.
Tang
,
L. J.
Butler
,
D. E.
Szpunar
, and
K. -C.
Lau
,
J. Chem. Phys.
131
,
044304
(
2009
).
15.
K. -C.
Lau
(private communication, May 2010).
16.
B. J.
Ratliff
,
C. C.
Womack
,
X. N.
Tang
,
W. M.
Landau
,
L. J.
Butler
, and
D. E.
Szpunar
,
J. Phys. Chem.
A
114
,
4934
(
2010
).
17.
L.-H.
Liu
and
W.-H.
Fang
(private communication, April 2010).
18.
A. G.
Baboul
,
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
110
,
7650
(
1999
).
19.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
, et al,
GAUSSIAN 03, Revision C.02
,
Gaussian, Inc.
,
Pittsburgh, PA,
2003
.
20.
Benjamin
FitzPatrick
, Ph.D. thesis,
University of Chicago
,
2010
.
21.
Laurie J.
Butler
, Ph.D. thesis,
University of California
, Berkeley,
1985
.
22.
B. L.
FitzPatrick
,
B. W.
Alligood
,
L. J.
Butler
,
S. -H.
Lee
, and
J. J.
Lin
,
J. Chem. Phys.
133
,
094306
(
2010
).
23.
R. E.
Center
and
A.
Mandl
,
J. Chem. Phys.
57
,
4104
(
1972
).
24.
T. M.
Miller
and
B.
Bederson
,
Adv. At. Mol. Phys.
13
,
1
(
1977
).
25.
J. P.
Senosiain
,
S. J.
Klippenstein
, and
J. A.
Miller
,
J. Phys. Chem.
A
110
,
6960
(
2006
).
26.
The Master Chemical Mechanism at http://mcm.leeds.ac.uk/MCM.
27.
W. P. L.
Carter
, Development of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales, Final Report to the California Air Resources Board, Contract No. 03-318, June 2009.
28.
J. H.
Kroll
and
J. H.
Seinfeld
,
Atmos. Environ.
42
,
3593
(
2008
).
29.
MULTIWELL-2010 Software,
2010
, designed and maintained by John R. Barker with contributors Nicholas F. Ortiz, Jack M. Preses, Lawrence L. Lohr, Andrea Maranzana, Philip J. Stimac, T. Lam Nguyen, and T. J. Dhilip Kumar, University of Michigan, Ann Arbor, MI, http://aoss.engin.umich.edu/multiwell/.
30.
J. R.
Barker
,
Int. J. Chem. Kinet.
33
,
232
(
2001
).
31.
J. R.
Barker
,
Int. J. Chem. Kinet.
41
,
748
(
2009
).
32.
T. L.
Nguyen
and
J. R.
Barker
,
J. Phys. Chem. A
114
,
3718
(
2010
).
33.
S.-L.
Chen
and
W.-H.
Fang
,
J. Phys. Chem.
A
111
,
9355
(
2007
).

Supplementary Material

You do not currently have access to this content.