A detailed model is presented that describes the temporal and spectral interference patterns resulting from phase-recovery infrared–visible sum-frequency spectroscopy. Included in this model are the effects of dispersive elements other than the phase shifting unit placed between the sample and local oscillator signals. This inclusion is critical when considering the interference patterns arising from studies of buried interfaces. Furthermore, in the midinfrared where it is difficult to have high visibility of the fringes, it is demonstrated that local field corrections have a significant effect on the shape of the interference pattern. By collecting and subsequently fitting a two-dimensional interference pattern displaying both temporal and spectral fringes, a complete characterization of all these effects is possible.

You do not currently have access to this content.