Superpositioning of relaxation data as a function of the product variable TVγ, where T is temperature, V the specific volume, and γ a material constant, is an experimental fact demonstrated for approximately 100 liquids and polymers. Such scaling behavior would result from the intermolecular potential having the form of an inverse power law (IPL), suggesting that an IPL is a good approximation for certain relaxation properties over the relevant range of intermolecular distances. However, the derivation of the scaling property of an IPL liquid is based on reduced quantities, for example, the reduced relaxation time equal to T1/2V−1/3 times the actual relaxation time. The difference between scaling using reduced rather than unreduced units is negligible in the supercooled regime; however, at higher temperature the difference can be substantial, accounting for the purported breakdown of the scaling and giving rise to different values of the scaling exponent. Only the γ obtained using reduced quantities can be sensibly related to the intermolecular potential.

1.
C. M.
Roland
,
S.
Hensel-Bielowka
,
M.
Paluch
, and
R.
Casalini
,
Rep. Prog. Phys.
68
,
1405
(
2005
).
2.
C. M.
Roland
,
Macromolecules
43
,
7875
(
2010
).
3.
4.
R.
Casalini
and
C. M.
Roland
,
Phys. Rev. E
72
,
031503
(
2005
).
5.
C.
Alba-Simionesco
,
A.
Cailliaux
,
A.
Alegria
, and
G.
Tarjus
,
Europhys. Lett.
68
,
58
(
2004
).
6.
C.
Dreyfus
,
A.
Le Grand
,
J.
Gapinski
,
W.
Steffen
, and
A.
Patkowski
,
Eur. J. Phys.
42
,
309
(
2004
).
7.
C. M.
Roland
,
S.
Bair
, and
R.
Casalini
,
J. Chem. Phys.
125
,
124508
(
2006
).
8.
A. S.
Pensado
,
A. A. H.
Pádua
,
M. J. P.
Comuñas
, and
J
Fernández
,
J. Phys. Chem. B
112
,
5563
(
2008
).
9.
K. R.
Harris
,
J. Chem. Phys.
131
,
054503
(
2009
).
10.
J.
Budzien
,
J. D.
McCoy
, and
D. B.
Adolf
,
J. Chem. Phys.
121
,
10291
(
2004
).
11.
G.
Tsolou
,
V. A.
Harmandaris
, and
V. G.
Mavrantzas
,
J. Chem. Phys.
124
,
084906
(
2006
).
12.
D.
Coslovich
and
C. M.
Roland
,
J. Phys. Chem. B
112
,
1329
(
2008
).
13.
D.
Coslovich
and
C. M.
Roland
,
J. Chem. Phys.
131
,
151103
(
2009
).
14.
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
129
,
184507
(
2008
);
[PubMed]
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
129
,
184508
(
2008
).
[PubMed]
15.
T. B.
Schrøder
,
U. R.
Pedersen
,
N. P.
Bailey
,
S.
Toxvaerd
, and
J. C.
Dyre
,
Phys. Rev. E
80
,
041502
(
2009
).
16.
W. B.
Streett
and
K. E.
Gubbins
,
Annu. Rev. Phys. Chem.
28
,
373
(
1977
).
17.
V. N.
Kabadi
and
W. A.
Steele
,
J. Phys. Chem.
89
,
1467
(
1985
).
18.
F. J.
Vesely
,
J. Chem. Phys.
125
,
214106
(
2006
).
19.
D.
Fragiadakis
and
C. M.
Roland
, “
Conection between dynamics and thermodynamics of liquids on the melting line
,” Phys. Rev. E (submitted).
20.
W. G.
Hoover
and
M.
Ross
,
Contemp. Phys.
12
,
339
(
1971
).
21.
Y.
Hiwatari
,
H.
Matsuda
,
T.
Ogawa
,
N.
Ogita
, and
A.
Ueda
,
Prog. Theor. Phys.
52
,
1105
(
1974
).
22.
D.
Ben-Amotz
and
G.
Stell
,
J. Chem. Phys.
119
,
10777
(
2003
).
23.
J.
Jonas
,
D. H.
Hasha
, and
S. G.
Huang
,
J. Chem. Phys.
84
,
109
(
1980
).
24.
NIST Chemistry WebBook, in
NIST Standard Reference Database
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
NIST
,
Gaithersburg
,
2005
), Vol. 69.
25.
M.
Yoshimura
,
C.
Boned
,
A.
Baylaucq
,
G.
Galliéro
, and
H.
Ushiki
,
J. Chem. Thermodyn.
41
,
291
(
2009
).
26.
M.
Yoshimura
,
C.
Boned
,
G.
Galliéro
,
J.-P.
Bazile
,
A.
Baylaucq
, and
H.
Ushiki
,
Chem. Phys.
369
,
126
(
2010
).
You do not currently have access to this content.