The electronic structures at the MoO3/Co interface were investigated using synchrotron-based ultraviolet and x-ray photoelectron spectroscopy. It was found that interfacial chemical reactions lead to the reduction of Mo oxidation states and the formation of Co-O bonds. These interfacial chemical reactions also induce a large interface dipole, which significantly increases the work function of the cobalt substrate. In addition, two interface states located at 1.0 and 2.0 eV below the Fermi level are identified. These two states overlap at film thickness of between 2–4 nm, which suggests the MoO3 intermediate layer may facilitate ohmic charge transport.

1.
K.
Tsukagoshi
,
B. W.
Alphenaar
, and
H.
Ago
,
Nature
401
(
6753
),
572
(
1999
).
2.
Z. H.
Xiong
,
D.
Wu
,
Z. Valy
Vardeny
, and
J.
Shi
,
Nature
427
(
6977
),
821
(
2004
).
3.
F. J.
Wang
,
Z. H.
Xiong
,
D.
Wu
,
J.
Shi
, and
Z. V.
Vardeny
,
Synth. Met.
155
(
1
),
172
(
2005
).
4.
V. A.
Dediu
,
L. E.
Hueso
,
I.
Bergenti
, and
C.
Taliani
,
Nature Mater.
8
(
9
),
707
(
2009
).
5.
H.
Shim
,
K. V.
Raman
,
Y. J.
Park
,
T. S.
Santos
,
G. X.
Miao
,
B.
Satpati
, and
J. S.
Moodera
,
Phys. Rev. Lett.
100
(
22
),
226603
(
2008
).
6.
G.
Schmidt
,
D.
Ferrand
,
L. W.
Molenkamp
,
A. T.
Filip
, and
B. J.
van Wees
,
Phys. Rev. B
62
(
8
),
R4790
(
2000
).
7.
T. S.
Santos
,
J. S.
Lee
,
P.
Migdal
,
I. C.
Lekshmi
,
B.
Satpati
, and
J. S.
Moodera
,
Phys. Rev. Lett.
98
(
1
),
016601
(
2007
).
8.
M.
Popinciuc
,
H. T.
Jonkman
, and
B. J.
van Wees
,
J. Appl. Phys.
101
(
9
),
093701
(
2007
).
9.
M.
Grobosch
,
C.
Schmidt
,
W. J. M.
Naber
,
W. G.
Van Der Wiel
, and
M.
Knupfer
,
Synth. Met.
160
(
3–4
),
238
(
2010
).
10.
T.
Matsushima
,
Y.
Kinoshita
, and
H.
Murata
,
Appl. Phys. Lett.
91
(
25
),
253504
(
2007
).
11.
H.
You
,
Y.
Dai
,
Z.
Zhang
, and
D.
Ma
,
J. Appl. Phys.
101
(
2
),
026105
(
2007
).
12.
C. W.
Chu
,
S. H.
Li
,
C. W.
Chen
,
V.
Shrotriya
, and
Y.
Yang
,
Appl. Phys. Lett.
87
(
19
),
193508
(
2005
).
13.
D.
Kumaki
,
T.
Umeda
, and
S.
Tokito
,
Appl. Phys. Lett.
92
(
1
),
013301
(
2008
).
14.
M.
Zhang
,
Irfan
,
H.
Ding
,
Y.
Gao
, and
C. W.
Tang
,
Appl. Phys. Lett.
96
(
18
),
183301
(
2010
).
15.
T.
Hori
,
T.
Shibata
,
V.
Kittichungchit
,
H.
Moritou
,
J.
Sakai
,
H.
Kubo
,
A.
Fujii
, and
M.
Ozaki
,
Thin Solid Films
518
(
2
),
522
(
2009
).
16.
O.
Andreyev
,
Y. M.
Koroteev
,
M.
Sáchez Albaneda
,
M.
Cinchetti
,
G.
Bihlmayer
,
E. V.
Chulkov
,
J.
Lange
,
F.
Steeb
,
M.
Bauer
,
P. M.
Echenique
,
S.
Blüel
, and
M.
Aeschlimann
,
Phys. Rev. B
74
(
19
),
195416
(
2006
).
17.
M.
Cinchetti
,
K.
Heimer
,
J. P.
Wustenberg
,
O.
Andreyev
,
M.
Bauer
,
S.
Lach
,
C.
Ziegler
,
Y.
Gao
, and
M.
Aeschlimann
,
Nature Mater.
8
(
2
),
115
(
2009
).
18.
R.
Lin
,
F.
Wang
,
J.
Rybicki
,
M.
Wohlgenannt
, and
K. A.
Hutchinson
,
Phys. Rew. B
81
,
195214
(
2010
).
19.
V.
Dediu
,
L. E.
Hueso
,
I.
Bergenti
,
A.
Riminucci
,
F.
Borgatti
,
P.
Graziosi
,
C.
Newby
,
F.
Casoli
,
M. P.
De Jong
,
C.
Taliani
, and
Y.
Zhan
,
Phys. Rev. B
78
(
11
),
115203
(
2008
).
20.
X. J.
Yu
,
O.
Wilhelmi
,
H. O.
Moser
,
S. V.
Vidyarai
,
X. Y.
Gao
,
A. T. S.
Wee
,
T.
Nyunt
,
H.
Qian
, and
H.
Zheng
,
J. Electron Spectrosc. Relat. Phenom.
144–147
,
1031
(
2005
).
21.
J.
Cechal
,
J.
Luksch
,
K.
Konakova
,
M.
Urbanek
,
E.
Brandejsova
, and
T.
Sikola
,
Surf. Sci.
602
,
2693
(
2008
).
22.
H.
Ishii
,
K.
Sugiyama
,
E.
Ito
, and
K.
Seki
,
Adv. Mater.
11
,
605
(
1999
).
23.
V.
Bhosle
,
A.
Tiwari
, and
J.
Narayan
,
J. Appl. Phys.
97
(
8
),
083539
(
2005
).
24.
C. I.
Wu
,
C. T.
Lin
,
G. R.
Lee
,
T. Y.
Cho
,
C. C.
Wu
, and
T. W.
Pi
,
J. Appl. Phys.
105
(
3
),
033717
(
2009
).
25.
T. H.
Fleisch
and
G. J.
Mains
,
J. Chem. Phys.
76
(
2
),
780
(
1982
).
26.
Z. X.
Shen
,
J. W.
Allen
,
P. A. P.
Lindberg
,
D. S.
Dessau
,
B. O.
Wells
,
A.
Borg
,
W.
Ellis
,
J. S.
Kang
,
S. J.
Oh
,
I.
Lindau
, and
W. E.
Spicer
,
Phys. Rev. B
42
(
3
),
1817
(
1990
).
27.
First principles were based on density-functional theory within the generalized gradient. Approximations were performed by using VASP (Vienna Ab-initio Simulation Package) code with the frozen-core projector-augmented wave pseudopotentials. A 500 eV was applied as the cutoff energy and the k- point mesh of 2 × 2 × 2 within the Monkhorst–Pack scheme was used for supercell calculations. All structures were fully relaxed until the force was smaller than 0.02 eV/Å.
28.
K.
Kanai
,
K.
Koizumi
,
S.
Ouchi
,
Y.
Tsukamoto
,
K.
Sakanoue
,
Y.
Ouchi
, and
K.
Seki
,
Org. Electron.
11
(
2
),
188
(
2010
).
29.
R.
Tokarz-Sobieraj
,
K.
Hermann
,
M.
Witko
,
A.
Blume
,
G.
Mestl
, and
R.
Schlögl
,
Surf. Sci.
489
(
1–3
),
107
(
2001
).
30.
Y.
Yi
,
P. E.
Jeon
,
H.
Lee
,
K.
Han
,
H. S.
Kim
,
K.
Jeong
, and
S. W.
Cho
,
J. Chem. Phys.
130
(
9
),
094704
(
2009
).
31.
H.
Lee
,
S. W.
Cho
,
K.
Han
,
P. E.
Jeon
,
C. N.
Whang
,
K.
Jeong
,
K.
Cho
, and
Y.
Yi
,
Appl. Phys. Lett.
93
(
4
),
043308
(
2008
).
32.
M.
Kröger
,
S.
Hamwi
,
J.
Meyer
,
T.
Riedl
,
W.
Kowalsky
, and
A.
Kahn
,
Appl. Phys. Lett.
95
(
12
),
123301
(
2009
).
33.
D.
Cahen
and
A.
Kahn
,
Adv. Mater.
15
,
271
277
(
2003
).
34.
M.
Zhou
,
L. L.
Chua
,
R. Q.
Png
,
C. K.
Yong
,
S.
Sivaramakrishnan
,
P. J.
Chia
,
A. T. S.
Wee
,
R. H.
Friend
, and
P. K. H.
Ho
,
Phys. Rev. Lett.
103
(
3
),
036601
(
2009
).
You do not currently have access to this content.