We consider the Dirac–Frenkel variational principle in Wigner phase-space and apply it to the Wigner–Liouville equation for both imaginary and real time dynamical problems. The variational principle allows us to deduce the optimal time-evolution of the parameter-dependent Wigner distribution. It is shown that the variational principle can be formulated alternatively as a “principle of least action.” Several low-dimensional problems are considered. In imaginary time, high-temperature classical distributions are “cooled” to arrive at low-temperature quantum Wigner distributions whereas in real time, the coherent dynamics of a particle in a double well is considered. Especially appealing is the relative ease at which Feynman's path integral centroid variable can be incorporated as a variational parameter. This is done by splitting the high-temperature Boltzmann distribution into exact local centroid constrained distributions, which are thereafter cooled using the variational principle. The local distributions are sampled by Metropolis Monte Carlo by performing a random walk in the centroid variable. The combination of a Monte Carlo and a variational procedure enables the study of quantum effects in low-temperature many-body systems, via a method that can be systematically improved.

1.
H.-W.
Lee
,
Phys. Rep.
259
,
147
(
1995
).
2.
E.
Wigner
,
Phys. Rev.
40
,
749
(
1932
).
3.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
4.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
J. Chem. Phys.
119
,
12179
(
2003
).
5.
E. J.
Heller
,
J. Chem. Phys.
65
,
1289
(
1976
).
6.
R.
Hernandez
and
G. A.
Voth
,
Chem. Phys.
233
,
243
(
1998
).
7.
J.
Liu
and
W. H.
Miller
,
J. Chem. Phys.
125
,
224104
(
2006
).
8.
D.
Marinica
,
M.-P.
Gaigeot
, and
D.
Borgis
,
Chem. Phys. Lett.
423
,
390
(
2006
).
9.
Q.
Shi
and
E.
Geva
,
J. Phys. Chem. A.
107
,
9059
(
2003
).
10.
J.
Shao
,
J.-L.
Liao
, and
E.
Pollak
,
J. Chem. Phys.
108
,
9711
(
1998
).
11.
J. A.
Poulsen
,
H.
Li
, and
G.
Nyman
,
J. Chem. Phys.
131
,
024117
(
2009
).
12.
J. A.
Poulsen
,
J.
Scheers
,
G.
Nyman
, and
P. J.
Rossky
,
Phys. Rev. B
75
,
224505
(
2007
).
13.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
J. Phys. Chem. A
108
,
8743
(
2004
).
14.
T. D.
Hone
,
J. A.
Poulsen
,
P. J.
Rossky
, and
D. E.
Manolopoulos
,
J. Phys. Chem. B
112
,
294
(
2008
).
15.
J.
Liu
,
W. H.
Miller
,
F.
Paesani
,
W.
Zhang
, and
D. A.
Case
,
J. Chem. Phys.
131
,
164509
(
2009
).
16.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
J. Phys. Chem. B
108
,
19799
(
2004
).
17.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
J. Chem. Theory Comput.
2
,
1482
(
2006
).
18.
W. H.
Zurek
,
Los Alamos Science
27
,
86
(
2002
).
19.
M.
Gell-Mann
and
J. B.
Hartle
,
Phys. Rev. D
47
,
3345
(
1993
).
20.
J.
Liu
and
W. H.
Miller
,
J. Chem. Phys.
131
,
074113
(
2009
).
21.
J.
Frenkel
,
Wave Mechanics, Advanced General Theory
(
Clarendon Press
,
Oxford
,
1934
).
22.
A. D.
McLachlan
,
Mol. Phys.
8
,
39
(
1964
).
23.
C.
Lubich
,
Math. Comput.
74
,
765
(
2004
).
24.
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
25.
H. D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
26.
E. J.
Heller
,
J. Chem. Phys.
64
,
63
(
1976
).
27.
M.
Hillery
,
R. F.
O’Connel
,
M. O.
Scully
, and
E. P.
Wigner
,
Phys. Rep.
106
,
121
(
1984
).
28.
C. K.
Zachos
,
D. B.
Fairlie
, and
T. L.
Curtright
,
Quantum Mechanics in Phase-Space
,
World Scientific Series in 20th Century Physics
(
World Scientific
,
Singapore
,
2005
), vol.
34
.
29.
J.
Von Neumann
,
Mathematical Foundations of Quantum Mechanics
(
Princeton University Press
,
Princeton
,
1955
).
30.
I. N.
Bronshtein
and
K. A.
Semendyayev
,
Handbook of Mathematics
, English translation edited by
K. A.
Hirsch
(
Van Nostrand Reinhold Company Inc.
,
New York
,
1985
).
31.
K. G.
Kay
,
Chem. Phys.
137
,
165
(
1989
).
32.
C.
Lubich
,
From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis
(
European Mathematical Society
,
Zurich
,
2008
).
33.
P.
Kramer
,
J. Phys.: Conf. Ser.
99
,
012009
(
2008
).
34.
D. V.
Shalashilin
and
I.
Burghardt
,
J. Chem. Phys.
129
,
084104
(
2008
).
35.
B. R.
Jensen
and
J.
Linderberg
,
J. Phys. Chem. A
103
,
9475
(
1999
).
36.
R. P.
Feynman
,
Statistical Mechanics
(
Addison-Wesley
,
Reading MA
,
1998
).
37.
R. P.
Feynman
and
H.
Kleinert
,
Phys. Rev. A
34
,
5080
(
1986
).
38.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2357
(
1999
).
39.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
40.
T.
Yamamoto
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
116
,
7335
(
2002
).
41.
G. D.
Billing
,
J. Chem. Phys.
114
,
6641
(
2001
).
42.
K. L.
Feilberg
,
G. D.
Billing
, and
M. S.
Johnson
,
J. Phys. Chem. A
105
,
11171
(
2001
).
You do not currently have access to this content.