Density-functional theory is used to study the geometric and electronic structure of cationic

${\rm Si}_{16}^+$
Si16+ clusters with a Ti, V, or Cr dopant atom. Through unbiased global geometry optimization based on the basin-hopping approach, we confirm that a Frank-Kasper polyhedron, with the metal atom at the center, represents the ground-state isomer for all three systems. The endohedral cage geometry is thus stabilized even though only
${\rm VSi}_{16}^+$
VSi16+
achieves electronic shell closure within the prevalent spherical potential model. Our analysis of the electronic structure traces this diminished role of shell closure for the stabilization back to the adaptive capability of the metal-Si bonding, which is more the result of a complex hybridization than the originally proposed mere formal charge transfer. The resulting flexibility of the metal-Si bond can also help to stabilize “non-magic” cage-dopant combinations, which suggests that a wider range of materials may eventually be cast into this useful geometry for cluster-assembled materials.

1.
K.
Jackson
and
B.
Nellermoe
,
Chem. Phys. Lett.
254
,
249
(
1996
).
2.
Q.
Sun
,
Q.
Wang
,
T. M.
Briere
,
V.
Kumar
,
Y.
Kawazoe
, and
P.
Jena
,
Phys. Rev. B
65
,
235417
(
2002
).
3.
H.
Hiura
,
T.
Miyazaki
, and
T.
Kanayama
,
Phys. Rev. Lett.
86
,
1733
(
2001
).
4.
V.
Kumar
and
Y.
Kawazoe
,
Phys. Rev. Lett.
87
,
045503
(
2001
).
5.
V.
Kumar
and
Y.
Kawazoe
,
Phys. Rev. B
65
,
073404
(
2002
).
6.
M. F.
Jarrold
and
E. C.
Honea
,
J. Phys. Chem.
95
,
9181
(
1991
).
7.
K.-M.
Ho
,
A. A.
Shvartsburg
,
B.
Pan
,
Z.-Y.
Lu
,
C.-Z.
Wang
,
J. G.
Wacker
,
J. L.
Fye
, and
M. F.
Jarrold
,
Nature (London)
392
,
582
(
1998
).
8.
K. A.
Jackson
,
M.
Horoi
,
I.
Chaudhuri
,
T.
Frauenheim
, and
A. A.
Shvartsburg
,
Phys. Rev. Lett.
93
,
013401
(
2004
).
9.
J.
Bai
,
L.-F.
Cui
,
J.
Wang
,
S.
Yoo
,
X.
Li
,
J.
Jellinek
,
C.
Koehler
,
T.
Frauenheim
,
L.-S.
Wang
, and
X.
Zeng
,
J. Phys. Chem. A
110
,
908
(
2006
).
10.
V.
Kumar
,
Comput. Mater. Sci.
36
,
1
(
2006
).
11.
J.
Ulises Reveles
and
S. N.
Khanna
,
Phys. Rev. B
72
,
165413
(
2005
).
12.
J.
Ulises Reveles
and
S. N.
Khanna
,
Phys. Rev. B
74
,
035435
(
2006
).
13.
M. B.
Torres
,
E. M.
Fernandez
, and
L. C.
Balbás
,
Phys. Rev. B
75
,
205425
(
2007
);
M. B.
Torres
,
E. M.
Fernandez
, and
L. C.
Balbas
,
J. Phys. Chem. C
115
,
335
(
2011
).
14.
T.
Rachi
,
K.
Tanigaki
,
R.
Kumashiro
,
J.
Winter
, and
H.
Kuzmany
,
Chem. Phys. Lett.
409
,
48
(
2005
).
15.
K. A.
Jackson
,
E.
Kaxiras
, and
M. R.
Pederson
,
J. Phys. Chem.
98
,
7805
(
1994
).
16.
F. C.
Frank
and
J. S.
Kasper
,
Acta Crystallogr.
11
,
184
(
1958
).
17.
F. C.
Frank
and
J. S.
Kasper
,
Acta Crystallogr.
12
,
483
(
1959
).
18.
K.
Koyasu
,
M.
Akutsu
,
M.
Mitsui
, and
A.
Nakajima
,
J. Am. Chem. Soc.
127
,
4998
(
2005
).
19.
K.
Koyasu
,
J.
Atobe
,
M.
Akutsu
,
M.
Mitsui
, and
A.
Nakajima
,
J. Phys. Chem. A
111
,
42
(
2007
).
20.
J. T.
Lau
,
K.
Hirsch
,
Ph.
Klar
,
A.
Langenberg
,
F.
Lofink
,
R.
Richter
,
J.
Rittmann
,
M.
Vogel
,
V.
Zamudio-Bayer
,
T.
Müller
, and
B. v.
Issendorff
,
Phys. Rev. A
79
,
053201
(
2009
).
21.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
22.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1997
).
23.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
24.
C.
Adamo
and
V.
Barone
.
J. Chem. Phys.
110
,
6158
(
1999
).
25.
G.
Frenking
,
I.
Antes
,
M.
Bohme
,
S.
Dapprich
,
A. W.
Ehlers
,
V.
Jonas
,
A.
Neuhaus
,
M.
Otto
,
R.
Stegmann
,
A.
Veldkamp
, and
S. F.
Vyboishchikov
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
VCH
,
New York
,
1996
), pp.
63
144
.
26.
T. R.
Cundari
,
B. T.
Benson
,
M. L.
Lutz
, and
S. O.
Sommerer
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
VCH
,
New York
,
1996
), pp.
145202
.
27.
C. S.
Garoufalis
,
A. D.
Zdetsis
, and
S.
Grimme
,
Phys. Rev. Lett.
87
,
276402
(
2001
).
28.
W. K.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterlin
, and
B. T.
Flannery
,
Numerical Recipes
, 3rd ed. (
Cambridge University Press
,
Cambridge, England
,
2007
).
29.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
(
1997
).
30.
D. J.
Wales
,
J. P. K.
Doye
,
M. A.
Miller
,
P. N.
Mortenson
and
T. R.
Walsh
,
Adv. Chem. Phys.
115
,
1
(
2000
).
31.
R.
Gehrke
and
K.
Reuter
,
Phys. Rev. B
79
,
085412
(
2009
).
32.
J. J.
Thomson
,
Philos. Mag.
6
,
237
(
1904
).
33.
See supplementary material at http://dx.doi.org/10.1063/1.3604565 for detailed information about the structures of identified lowest-lying isomers.
34.
A.
Willand
,
M.
Gramzow
,
S. A.
Ghasemi
,
L.
Genovese
,
Th.
Deutsch
,
K.
Reuter
, and
S.
Goedecker
,
Phys. Rev. B
81
,
201405
R
(
2010
).

Supplementary Material

You do not currently have access to this content.