The dynamics of reactions of CN radicals with cyclohexane, d12-cyclohexane, and tetramethylsilane have been studied in solutions of chloroform, dichloromethane, and the deuterated variants of these solvents using ultraviolet photolysis of ICN to initiate a reaction. The H(D)-atom abstraction reactions produce HCN (DCN) that is probed in absorption with sub-picosecond time resolution using ∼500 cm−1 bandwidth infrared (IR) pulses in the spectral regions corresponding to C−H (or C−D) and C≡N stretching mode fundamental and hot bands. Equivalent IR spectra were obtained for the reactions of CN radicals with the pure solvents. In all cases, the reaction products are formed at early times with a strong propensity for vibrational excitation of the C−H (or C−D) stretching (v3) and H−C−N (D−C−N) bending (v2) modes, and for DCN products there is also evidence of vibrational excitation of the v1 mode, which involves stretching of the C≡N bond. The vibrationally excited products relax to the ground vibrational level of HCN (DCN) with time constants of ∼130–270 ps (depending on molecule and solvent), and the majority of the HCN (DCN) in this ground level is formed by vibrational relaxation, instead of directly from the chemical reaction. The time-dependence of reactive production of HCN (DCN) and vibrational relaxation is analysed using a vibrationally quantum-state specific kinetic model. The experimental outcomes are indicative of dynamics of exothermic reactions over an energy surface with an early transition state. Although the presence of the chlorinated solvent may reduce the extent of vibrational excitation of the nascent products, the early-time chemical reaction dynamics in these liquid solvents are deduced to be very similar to those for isolated collisions in the gas phase. The transient IR spectra show additional spectroscopic absorption features centered at 2037 cm−1 and 2065 cm−1 (in CHCl3) that are assigned, respectively, to CN-solvent complexes and recombination of I atoms with CN radicals to form INC molecules. These products build up rapidly, with respective time constants of 8−26 and 11–22 ps. A further, slower rise in the INC absorption signal (with time constant >500 ps) is attributed to diffusive recombination after escape from the initial solvent cage and accounts for more than 2/3 of the observed INC.

1.
R. D.
Levine
,
Molecular Reaction Dynamics
(
Cambridge University Press
,
Cambridge, England
,
2005
).
2.
Tutorials in Molecular Reaction Dynamics
, edited by
M.
Brouard
and
C.
Vallance
(
Royal Society of Chemistry
,
Cambridge
,
2010
).
3.
S. J.
Greaves
,
R. A.
Rose
, and
A. J.
Orr-Ewing
,
Phys. Chem. Chem. Phys.
12
,
9129
(
2010
).
4.
J. C.
Owrutsky
,
D.
Raftery
, and
R. M.
Hochstrasser
,
Annu. Rev. Phys. Chem.
45
,
519
(
1994
).
5.
G. A.
Voth
and
R. M.
Hochstrasser
,
J. Phys. Chem.
100
,
13034
(
1996
).
6.
C. G.
Elles
and
F. F.
Crim
,
Annu. Rev. Phys. Chem.
57
,
273
(
2006
).
7.
D.
Raftery
,
M.
Iannone
,
C. M.
Phillips
, and
R. M.
Hochstrasser
,
Chem. Phys. Lett.
201
,
513
(
1993
).
8.
D.
Raftery
,
E.
Gooding
,
A.
Romanovsky
, and
R. M.
Hochstrasser
,
J. Chem. Phys.
101
,
8572
(
1994
).
9.
L.
Sheps
,
A. C.
Crowther
,
C. G.
Elles
, and
F. F.
Crim
,
J. Phys. Chem. A
109
,
4296
(
2005
).
10.
L.
Sheps
,
A. C.
Crowther
,
S. L.
Carrier
, and
F. F.
Crim
,
J. Phys. Chem. A
110
,
3087
(
2006
).
11.
A. C.
Crowther
,
S. L.
Carrier
,
T. J.
Preston
, and
F. F.
Crim
,
J. Phys. Chem. A
112
,
12081
(
2008
).
12.
A. C.
Crowther
,
S. L.
Carrier
,
T. J.
Preston
, and
F. F.
Crim
,
J. Phys. Chem. A
113
,
3758
(
2009
).
13.
S. L.
Carrier
,
T. J.
Preston
,
M.
Dutta
,
A. C.
Crowther
, and
F. F.
Crim
,
J. Phys. Chem. A
114
,
1548
(
2010
).
14.
S. J.
Greaves
,
R. A.
Rose
,
T. A. A.
Oliver
,
D. R.
Glowacki
,
M. N. R.
Ashfold
,
J. N.
Harvey
,
I. P.
Clark
,
G. M.
Greetham
,
A. W.
Parker
,
M.
Towrie
, and
A. J.
Orr-Ewing
,
Science
331
,
1423
(
2011
).
15.
A. M.
Smith
,
S. L.
Coy
,
W.
Klemperer
, and
K. K.
Lehmann
,
J. Mol. Spectrosc.
134
,
134
(
1989
).
16.
A. E.
Douglas
and
D.
Sharma
,
J. Chem. Phys.
21
,
448
(
1953
).
17.
G. A.
Bethardy
,
F. J.
Northrup
, and
R. G.
Macdonald
,
J. Chem. Phys.
105
,
4533
(
1996
).
18.
G. A.
Bethardy
,
F. J.
Northrup
, and
R. G.
Macdonald
,
J. Chem. Phys.
102
,
7966
(
1995
).
19.
L. R.
Copeland
,
F.
Mohammad
,
M.
Zahedi
,
D. H.
Volman
, and
W. M.
Jackson
,
J. Chem. Phys.
96
,
5817
(
1992
).
20.
C.
Huang
,
W.
Li
,
A. D.
Estillore
, and
A. G.
Suits
,
J. Chem. Phys.
129
,
074301
(
2008
).
21.
E.
Arunan
,
G.
Manke
, and
D. W.
Setser
,
Chem. Phys. Lett.
207
,
81
(
1993
).
22.
V. R.
Morris
,
F.
Mohammad
,
L.
Valdry
, and
W. M.
Jackson
,
Chem. Phys. Lett.
220
,
448
(
1994
).
23.
E.
Arunan
and
D. W.
Setser
,
J. Phys. Chem.
95
,
4190
(
1991
).
24.
G. M.
Greetham
,
P.
Burgos
,
Q.
Cao
,
I. P.
Clark
,
P. S.
Codd
,
R. C.
Farrow
,
M. W.
George
,
M.
Kogimitzis
,
P.
Matousek
,
A. W.
Parker
,
M. R.
Pollard
,
D. A.
Robinson
,
Z. J.
Xin
, and
M.
Towrie
,
Appl. Spectrosc.
64
,
1311
(
2010
).
25.
A. C.
Moskun
and
S. E.
Bradforth
,
J. Chem. Phys.
119
,
4500
(
2003
).
26.
A. C.
Moskun
,
A. E.
Jailaubekov
,
S. E.
Bradforth
,
G. H.
Tao
, and
R. M.
Stratt
,
Science
311
,
1907
(
2006
).
27.
G. A.
Bethardy
,
F. J.
Northrup
,
G.
He
,
I.
Tokue
, and
R. G.
Macdonald
,
J. Chem. Phys.
109
,
4224
(
1998
).
28.
I.
Benjamin
,
J. Chem. Phys.
103
,
2459
(
1995
).
29.
D. R.
Glowacki
,
R. A.
Rose
,
S. J.
Greaves
,
A. J.
Orr-Ewing
, and
J. N.
Harvey
, Nature Chemistry (unpublished results).
31.
V.
Samant
and
J. F.
Hershberger
,
Chem. Phys. Lett.
460
,
64
(
2008
).
32.
NIST Chemistry Webbook, NIST Standard Reference Database Number 69, edited by
P. J.
Linstrom
and
W. G.
Mallard
http://webbook.nist.gov (retrieved 15 Sept
2010
).
33.
J.
Larsen
,
D.
Madsen
,
J. A.
Poulsen
,
T. D.
Poulsen
,
S. R.
Keiding
, and
J.
Thogersen
,
J. Chem. Phys.
116
,
7997
(
2002
).
34.
J.
Helbing
,
M.
Chergui
,
S.
Fernandez-Alberti
,
J.
Echave
,
N.
Halberstadt
, and
J. A.
Beswick
,
Phys. Chem. Chem. Phys.
2
,
4131
(
2000
).
35.
U.
Samuni
,
S.
Kahana
,
R.
Fraenkel
,
Y.
Haas
,
D.
Danovich
, and
S.
Shaik
,
Chem. Phys. Lett.
225
,
391
(
1994
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.3603966 animated versions of time dependent spectra in Figs. 6 and 8, and for an alternative kinetic model and fit of the data presented in Sec. III C.
37.
D. R.
Glowacki
,
A. J.
Orr-Ewing
, and
J. N.
Harvey
,
J. Chem. Phys.
134
,
214508
(
2011
).

Supplementary Material

You do not currently have access to this content.