We report an analytical scheme for the calculation of first-order electrical properties using the spin-free Dirac-Coulomb (SFDC) Hamiltonian, thereby exploiting the well-developed density-matrix formulations in nonrelativistic coupled-cluster (CC) derivative theory. Orbital relaxation effects are fully accounted for by including the relaxation of the correlated orbitals with respect to orbitals of all types, viz., frozen-core, occupied, virtual, and negative energy state orbitals. To demonstrate the applicability of the presented scheme, we report benchmark calculations for first-order electrical properties of the hydrogen halides, HX with X = F, Cl, Br, I, At, and a first application to the iodo(fluoro)methanes, CHnF3 − nI, n = 0–3. The results obtained from the SFDC calculations are compared to those from nonrelativistic calculations, those obtained via leading-order direct perturbation theory as well as those from full Dirac-Coulomb calculations. It is shown that the full inclusion of spin-free (SF) relativistic effects is necessary to obtain accurate first-order electrical properties in the presence of fifth-row elements. The SFDC scheme is also recommended for applications to systems containing lighter elements because it introduces no extra cost in the rate-determining steps of a CC calculation in comparison to the nonrelativistic case. On the other hand, spin-orbit contributions are generally small for first-order electrical properties of closed-shell molecules and may be handled efficiently by means of perturbation theory.

1.
2.
K. G.
Dyall
and
K.
Fægri
,
Relativistic Quantum Chemistry
(
Oxford University Press
,
New York
,
2007
), Pt. III.
4.
S. R.
Langhoff
and
C. W.
Kern
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
 III
(
Plenum
,
New York
,
1997
), Vol. 4, p.
381
.
5.
L.
Visscher
,
Relativistic Electronic Structure Theory: Fundamentals
, edited by
P.
Schwerdtfeger
(
Elsevier
,
Amsterdam
,
2002
), Chap. 6, Pt. I, p.
295
.
6.
T.
Saue
,
K.
Fægri
,
T.
Helgaker
, and
O.
Gropen
,
Mol. Phys.
91
,
937
(
1997
).
7.
T.
Saue
and
H. J. A.
Jensen
,
J. Chem. Phys.
111
,
6211
(
1999
).
8.
T.
Yanai
,
T.
Nakajima
,
Y.
Ishikawa
, and
K.
Hirao
,
J. Chem. Phys.
114
,
6526
(
2001
).
9.
W.
Liu
,
G.
Hong
,
D.
Dai
,
L.
Li
, and
M.
Dolg
,
Theor. Chim. Acta
96
,
75
(
1997
).
10.
T.
Yanai
,
H.
Iikura
,
T.
Nakajima
,
Y.
Ishikawa
, and
K.
Hirao
,
J. Chem. Phys.
115
,
8267
(
2001
).
11.
T.
Saue
and
T.
Helgaker
,
J. Comput. Chem.
23
,
814
(
2002
).
12.
H. M.
Quiney
and
P.
Belanzoni
,
J. Chem. Phys.
117
,
5550
(
2002
).
13.
J. K.
Laerdahl
,
T.
Saue
, and
K.
Fægri
,
Theor. Chem. Acc.
97
,
177
(
1997
).
14.
M.
Abe
,
T.
Yanai
,
T.
Nakajima
, and
K.
Hirao
,
Chem. Phys. Lett.
388
,
68
(
2004
).
15.
T.
Fleig
,
J.
Olsen
, and
L.
Visscher
,
J. Chem. Phys.
119
,
2963
(
2003
).
16.
T.
Fleig
,
H. J. A.
Jensen
,
J.
Olsen
, and
L.
Visscher
,
J. Chem. Phys.
124
,
104106
(
2006
).
17.
J.
Thyssen
,
T.
Fleig
, and
H. J. A.
Jensen
,
J. Chem. Phys.
129
,
034109
(
2008
).
18.
S.
Knecht
,
H. J. A.
Jensen
, and
T.
Fleig
,
J. Chem. Phys.
132
,
014108
(
2010
).
19.
L.
Visscher
,
K. G.
Dyall
, and
T. J.
Lee
,
Int. J. Quantum Chem., Symp.
29
,
411
(
1995
).
20.
L.
Visscher
,
T. J.
Lee
, and
K. G.
Dyall
,
J. Chem. Phys.
105
,
8769
(
1996
).
21.
T.
Fleig
,
L. K.
Sørensen
, and
J.
Olsen
,
Theor. Chim. Acta
118
,
347
(
2007
).
22.
H. S.
Nataraj
,
M.
Kállay
, and
L.
Visscher
,
J. Chem. Phys.
133
,
234109
(
2010
).
23.
J. N. P.
van Stralen
,
L.
Visscher
,
C. V.
Larsen
, and
H. J. A.
Jensen
,
Chem. Phys.
311
,
81
(
2005
).
24.
L.
Visscher
,
T.
Enevoldsen
,
T.
Saue
, and
J.
Oddershede
,
J. Chem. Phys.
109
,
9677
(
1998
).
25.
L.
Visscher
,
Theor. Chim. Acta
98
,
68
(
1997
).
26.
K. G.
Dyall
,
J. Chem. Phys.
106
,
9618
(
1997
).
27.
K. G.
Dyall
,
J. Chem. Phys.
109
,
4201
(
1998
).
28.
K. G.
Dyall
and
T.
Enevoldsen
,
J. Chem. Phys.
111
,
10000
(
1999
).
29.
K. G.
Dyall
,
J. Chem. Phys.
115
,
9136
(
2001
).
30.
W.
Kutzelnigg
and
W.
Liu
,
J. Chem. Phys.
123
,
241102
(
2005
).
31.
W.
Kutzelnigg
and
W.
Liu
,
Mol. Phys.
104
,
2225
(
2006
).
32.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
125
,
044102
(
2005
).
33.
M.
Ilias
and
T.
Saue
,
J. Chem. Phys.
126
,
064102
(
2007
).
34.
W.
Liu
and
W.
Kutzelnigg
,
J. Chem. Phys.
126
,
114107
(
2007
).
35.
D.
Peng
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
,
J. Chem. Phys.
127
,
104106
(
2007
).
37.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys.
82
,
89
(
1974
).
38.
39.
C.
Chang
,
M.
Pelissier
, and
P.
Durand
,
Phys. Scr.
34
,
394
(
1986
).
40.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
99
,
4597
(
1993
).
41.
C.
Park
and
J. E.
Almlöf
,
Chem. Phys. Lett.
231
,
269
(
1994
).
42.
F.
Neese
,
A.
Wolf
,
T.
Fleig
,
M.
Reiher
, and
B. A.
Hess
,
J. Chem. Phys.
122
,
204107
(
2005
).
43.
C.
van Wüllen
, and
C.
Michauk
,
J. Chem. Phys.
123
,
204113
(
2005
).
44.
R.
Samzow
,
B. A.
Hess
, and
G.
Jansen
,
J. Chem. Phys.
96
,
1227
(
1992
).
45.
T.
Nakajima
and
K.
Hirao
,
J. Chem. Phys.
119
,
4105
(
2003
).
46.
J.
Seino
and
M.
Hada
,
Chem. Phys. Lett.
461
,
327
(
2008
).
47.
J.
Sikkema
,
L.
Visscher
,
T.
Saue
, and
M.
Ilias
,
J. Chem. Phys.
131
,
124116
(
2009
).
48.
L.
Adamowicz
,
W. D.
Laidig
, and
R. J.
Bartlett
,
Int. J. Quantum Chem., Symp.
18
,
245
(
1984
).
49.
A. C.
Scheiner
,
G. E.
Scuseria
,
J. E.
Rice
,
T. J.
Lee
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
87
,
5361
(
1987
).
50.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2623
(
1991
).
51.
L.
Cheng
and
J.
Gauss
(unpublished).
52.
K. G.
Dyall
,
J. Chem. Phys.
100
,
2118
(
1994
).
53.
L.
Visscher
and
T.
Saue
,
J. Chem. Phys.
113
,
3996
(
2000
).
54.
T.
Fleig
and
L.
Visscher
,
Chem. Phys.
311
,
113
(
2005
).
55.
S.
Knecht
,
H. J. A.
Jensen
, and
T.
Fleig
,
J. Chem. Phys.
128
,
014108
(
2008
).
56.
U.
Kaldor
and
B. A.
Hess
,
Chem. Phys. Lett.
230
,
1
(
1994
).
57.
B. A.
Hess
and
U.
Kaldor
,
J. Chem. Phys.
112
,
1809
(
2000
).
58.
S.
Hirata
,
T.
Yanai
,
W. A.
de Jong
,
T.
Nakajima
, and
K.
Hirao
,
J. Chem. Phys.
120
,
3297
(
2004
).
59.
R. E.
Stanton
and
S.
Havriliak
,
J. Chem. Phys.
81
,
1910
(
1984
).
60.
P. A.
Christiansen
and
K. S.
Pitzer
,
J. Chem. Phys.
74
,
1162
(
1981
).
61.
F.
Rakowitz
and
C. M.
Marian
,
Chem. Phys. Lett.
257
,
1162
(
1996
).
62.
T.
Saue
,
K.
Fægri
, and
O.
Gropen
,
Chem. Phys. Lett.
263
,
360
(
1996
).
63.
64.
I.
Lindgren
and
J.
Morrison
,
Atomic Many-Body Theory
(
Springer
,
Berlin
,
1982
).
65.
L. N.
Labzowsky
and
I.
Goidenko
,
Relativistic Electronic Structure Theory: Fundamentals
, edited by
P.
Schwerdtfeger
(
Elsevier
,
Amsterdam
,
2002
), Chap. 8, Pt. I, p.
401
.
66.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2639
(
1991
).
67.
J.
Gauss
,
W. J.
Lauderdale
,
J. F.
Stanton
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
182
,
207
(
1991
).
68.
G. E.
Scuseria
,
J. Chem. Phys.
94
,
442
(
1990
).
69.
T. J.
Lee
and
A. P.
Rendell
,
J. Chem. Phys.
94
,
6229
(
1991
).
70.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
200
,
1
(
1992
).
71.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
72.
J.
Gauss
and
J. F.
Stanton
,
Phys. Chem. Chem. Phys.
2
,
2047
(
2000
).
73.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
116
,
1773
(
2002
).
74.
M.
Kállay
,
J.
Gauss
, and
P. G.
Szalay
,
J. Chem. Phys.
119
,
2991
(
2003
).
75.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
Cambridge, England
,
2009
), Chap. 11.
76.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
77.
H.
Koch
,
H. J. A.
Jensen
,
P.
Jørgensen
,
T.
Helgaker
,
G. E.
Scuseria
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
92
,
4924
(
1990
).
78.
H.
Koch
and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
79.
P. G.
Szalay
,
Int. J. Quantum Chem.
55
,
151
(
1995
).
80.
J.
Arponen
,
Ann. Phys. (N.Y.)
151
,
311
(
1983
).
81.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
82.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
83.
R. M.
Stevens
,
R. M.
Pitzer
, and
W. N.
Lipscomb
,
J. Chem. Phys.
38
,
550
(
1963
).
84.
J.
Gerratt
and
I. M.
Mills
,
J. Chem. Phys.
49
,
1719
(
1968
).
85.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
,
Int. J. Quantum Chem., Symp.
13
,
225
(
1979
).
86.
N. C.
Handy
and
H. F.
Schaefer
 III
,
J. Chem. Phys.
81
,
5031
(
1984
).
87.
J. E.
Rice
and
R. D.
Amos
,
Chem. Phys. Lett.
122
,
585
(
1985
).
88.
Coupled cluster techniques for computational chemistry, a quantum chemical program package by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
, and
P. G.
Szalay
with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
D. B.
Bernholdt
,
C.
Berger
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D.
Matthews
,
T.
Metzroth
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
S.
Stopkowicz
,
W.
Schwalbach
,
A.
Tajti
,
M. E.
Varner
,
J.
Vázquez
,
J. D.
Watts
, and
F.
Wang
, and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. A.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
. For the current version, see http://www.cfour.de.
89.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
94
,
4334
(
1991
).
90.
L. E.
McMurchie
and
E. R.
Davidson
,
J. Comput. Phys.
26
,
218
(
1978
).
91.
C.
Berger
, Ph.D. dissertation (
Universität Mainz
,
2008
).
92.
S.
Stopkowicz
and
J.
Gauss
,
J. Chem. Phys.
129
,
164119
(
2008
).
93.
S.
Stopkowicz
and
J.
Gauss
,
J. Chem. Phys.
134
,
064114
(
2011
).
94.
B. O.
Roos
,
V.
Veryazov
, and
P.
Widmark
,
Theor. Chem. Acc.
111
,
345
(
2004
).
95.
In these calculations the numbers of the correlated occupied/virtual orbitals are 31/399, 35/455, 39/509, and 43/563 for CH3I, CH2FI, CHF2I, and CF3I, respectively. Cs point-group symmetry has been exploited to facilitate the calculations. However, coupled-cluster calculations for CHF2I and CF3I are not feasible with our current computational resources.
96.
K. A.
Peterson
,
B. C.
Shepler
,
D.
Figgen
, and
H.
Stoll
,
J. Phys. Chem. A
110
,
13877
(
2006
).
97.
The internal coordinates for CH3I are RC-I=2.133388 Å, RC-H=1.083109 Å, and HCI=107.767893°.
98.
The internal coordinates for CH2FI are RC-I=2.140953 Å, RC-H=1.084141 Å, RC-F=1.358431 Å, FCI=110.785732°, HCF=109.954871°, and HCF,ICF=117.830380°.
99.
The internal coordinates for CH2FI are RC-I=2.147095 Å, RC-H=1.085017 Å, RC-F=1.337433 Å, HCI=108.400340°, FCH=114.576724°, and FCH,ICH=129.099715°.
100.
The internal coordinates for CF3I are RC-I=2.141670 Å, RC-F=1.324814 Å, and FCI=110.427929°.
101.
C. T.
Dewberry
,
Z.
Kisiel
, and
S. A.
Cooke
,
J. Mol. Spectrosc.
261
,
82
(
2010
).
102.
S. L.
Stephens
and
N. R.
Walker
,
J. Mol. Spectrosc.
263
,
27
(
2010
).
103.
C.
Puzzarini
,
G.
Cazzoli
,
J. C.
López
,
J. L.
Alonso
,
A.
Baldacci
,
A.
Baldan
,
S.
Stopkowicz
,
L.
Cheng
, and
J.
Gauss
,
J. Chem. Phys.
134
,
174312
(
2011
).
104.
DIRAC, a relativistic ab initio electronic structure program, Release DIRAC08, written by
L.
Visscher
,
H. J. A.
Jensen
, and
T.
Saue
, with new contributions from
R.
Bast
,
S.
Dubillard
,
K. G.
Dyall
,
U.
Ekström
,
E.
Eliav
,
T.
Fleig
,
A. S. P.
Gomes
,
T. U.
Helgaker
,
J.
Henriksson
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
P.
Norman
,
J.
Olsen
,
M.
Pernpointner
,
K.
Ruud
,
P.
Sałek
, and
J.
Sikkema
(see http://dirac.chem.sdu.dk),
2008
.
105.
P.
Pyykkö
,
Z. Naturforsch.
47a
,
189
(
1992
).
106.
107.
108.
C.
Puzzarini
,
J. F.
Stanton
, and
J.
Gauss
,
Int. Rev. Phys. Chem.
29
,
273
(
2010
).
109.
J. N. P.
van Stralen
and
L.
Visscher
,
Mol. Phys.
101
,
2115
(
2003
).
You do not currently have access to this content.