A review of the literature on the calculation of electrostatic potentials, fields, and field gradients in systems consisting of charges and dipoles using the Ewald summation technique is presented. Discrepancies between the previous formulas are highlighted, and an error in the derivation of the reciprocal contributions to the electrostatic field and field gradient is corrected. The new formulas for the field and field gradient are shown to exhibit a termwise identity with the ones for the electrostatic energy.

1.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
, 2nd ed. (
Academic
,
San Diego
,
2002
).
2.
P.
Ewald
,
Ann. Phys.
64
,
253
(
1921
).
3.
T. M.
Nymand
and
P.
Linse
,
J. Chem. Phys.
112
,
6152
(
2000
).
4.
A.
Aguado
and
P. A.
Madden
,
J. Chem. Phys.
119
,
7471
(
2003
).
5.
T.
Laino
and
J.
Hutter
,
J. Chem. Phys.
129
,
074102
(
2008
).
6.
J.
Sala
,
E.
Guàrdia
, and
M.
Masia
,
J. Chem. Phys.
133
,
234101
(
2010
).
7.
J. W.
Weenk
and
H. A.
Harwig
,
J. Phys. Chem. Solids
38
,
1047
(
1977
).
8.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1999
).
9.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. London A
373
,
27
(
1980
).
10.
W.
Smith
,
CCP5 Info. Quart.
4
,
13
(
1982
);
W.
Smith
,
CCP5 Info. Quart.
46
,
18
(
1998
).
11.
A. N.
Chaba
and
R. K.
Pathria
,
J. Math. Phys.
16
,
1457
(
1975
).
You do not currently have access to this content.