Thermostat algorithms in a molecular dynamics simulation maintain an average temperature of a system by regulating the atomic velocities rather than the internal degrees of freedom. Herein, we present a “phonostat” algorithm that can regulate the total energy in a given internal degree of freedom. In this algorithm, the modal energies are computed at each time step using a mode-tracking scheme and then the system is driven by an external driving force of desired frequency and amplitude. The rate and amount of energy exchange between the phonostat and the system is controlled by two distinct damping parameters. Two different schemes for controlling the external driving force amplitude are also presented. In order to test our algorithm, the method is applied initially to a simple anharmonic oscillator for which the role of various phonostat parameters can be carefully tested. We then apply the phonostat to a more realistic (10,0) carbon nanotube system and show how such an approach can be used to regulate energy of highly anharmonic modes.

1.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
2.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
3.
R.
Kubo
,
Rep. Prog. Phys.
29
,
255
(
1966
).
4.
D.
Frankel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic
,
New York
,
2002
).
5.
P. H.
Nguyen
,
S. -M.
Park
, and
G.
Stock
,
J. Chem. Phys.
132
,
025102
(
2010
).
6.
K.
Jensen
,
J.
Weldon
,
H.
Garcia
, and
A.
Zettl
,
Nano Lett.
7
,
3508
(
2007
).
7.
H. G.
Craighead
,
Science.
290
,
1532
(
2000
).
8.
A.
Sampathkumar
,
K. L.
Ekinci
, and
T. W.
Murray
,
Nano Lett.
11
,
1014
(
2011
).
9.
H.
Jiang
,
M. -F.
Yu
,
B.
Liu
, and
Y.
Huang
,
Phys. Rev. Lett.
93
,
185501
(
2004
).
10.
K.
Moritsugu
,
O.
Miyashita
, and
A.
Kidera
,
Phys. Rev. Lett.
8
5
,
3970
(
2000
).
11.
S. R.
Phillpot
,
P. K.
Schelling
, and
P.
Keblinski
,
J. Mater. Sci.
40
,
3143
(
2004
).
12.
P. A.
Greaney
,
G.
Lani
,
G.
Cicero
, and
J. C.
Grossman
,
Nano Lett.
9
,
3699
(
2009
).
13.
L. M.
Raff
,
J. Chem. Phys.
89
,
5680
(
1988
).
14.
P. H.
Nguyen
, and
G.
Stock
,
J. Chem. Phys.
119
,
11350
(
2003
).
15.
A.
Bastida
,
M. A.
Soler
,
J.
Zúñiga
,
A.
Requena
,
A.
Kalstein
, and
S.
Fernández-Alberti
,
J. Chem. Phys.
132
,
224501
(
2010
).
16.
P.
Alex Greaney
and
J. C.
Grossman
,
Phys. Rev. Lett
98
,
125503
(
2007
).
17.
M.
Bockrath
,
Nat. Nanotechnol.
4
,
619
(
2009
).
18.
K. L.
Ekinci
,
M. L.
Roukes
,
Rev. Sci. Instrum.
76
,
061101
(
2005
).
19.
B.
Lassagne
,
D.
Garcia-Sanchez
,
A.
Aguasca
, and
A.
Bachtold
,
Nano Lett.
8
,
3735
(
2008
).
20.
H. -Y.
Chiu
,
P.
Hung
,
H. W. Ch.
Postma
, and
M.
Bockrath
,
Nano Lett.
8
,
4342
(
2008
).
21.
S. J.
Stuart
,
A. B.
Tutein
, and
J. A.
Harrison
,
J. Chem. Phys.
112
,
6472
(
2000
).
22.
S. J.
Plimpton
,
J. Comp. Phys.
117
,
1
(
1995
), see http://lammps.sandia.gov.
You do not currently have access to this content.