Classical molecular dynamics (MD) simulations are employed as a tool to investigate structural properties of ice crystals under several temperature and pressure conditions. All ice crystal phases are analyzed by means of a computational protocol based on a clustering approach following standard MD simulations. The MD simulations are performed by using a recently published classical interaction potential for oxygen and hydrogen in bulk water, derived from neutron scattering data, able to successfully describe complex phenomena such as proton hopping and bond formation/breaking. The present study demonstrates the ability of the interaction potential model to well describe most ice structures found in the phase diagram of water and to estimate the relative stability of 16 known phases through a cluster analysis of simulated powder diagrams of polymorphs obtained from MD simulations. The proposed computational protocol is suited for automated crystal structure identification.

1.
E. A.
Zheligovskaya
and
G.
Malenkov
,
Russ. Chem. Rev.
75
,
57
(
2006
).
2.
B.
Guillot
,
J. Mol. Liq.
101
,
219
(
2002
).
3.
E.
Sanz
,
C.
Vega
,
J. L. F.
Abascal
, and
L. G.
MacDowell
,
Phys. Rev. Lett.
92
,
255701
(
2004
).
4.
A.
Baranyai
,
A.
Bartok
, and
A.
Chialvo
,
J. Chem. Phys.
123
,
054502
(
2005
).
5.
E. A.
Zheligovskaya
,
J. Struct. Chem.
49
,
459
(
2008
).
6.
V. I.
Poltev
,
T. I.
Grokhlina
, and
G. G.
Malenkov
,
J. Biomol. Struct. Dyn.
2
,
413
(
1984
).
7.
V.
Buch
,
R.
Martonak
, and
M.
Parrinello
,
J. Chem. Phys.
123
,
051108
(
2005
).
8.
D. W. M.
Hofmann
,
L. N.
Kuleshova
, and
B.
D’Aguanno
,
Chem. Phys. Lett.
448
,
138
(
2007
).
9.
D. W. M.
Hofmann
,
L. N.
Kuleshova
, and
B.
D'Aguanno
,
J. Mol. Model.
14
,
225
(
2008
).
10.
D. W. M.
Hofmann
,
L. N.
Kuleshova
, and
B.
D’Aguanno
,
J. Power Sources
195
,
7743
(
2010
).
12.
G.
Malenkov
,
J. Phys. Condens. Matter
21
,
1
(
2009
).
13.
M. A.
Carignano
,
P. B.
Shepson
, and
I.
Szleifer
,
Mol. Phys.
103
,
2957
(
2005
).
14.
E.
Moore
and
V.
Molinero
,
J. Chem. Phys.
130
,
244505
(
2009
).
15.
E.
Moore
,
E.
de la Llave
,
D.
Scherlis
,
K.
Welke
, and
V.
Molinero
,
Phys. Chem. Chem. Phys
12
,
4124
(
2010
).
16.
D. W. M.
Hofmann
and
L. N.
Kuleshova
,
J. Appl. Crystallogr.
38
,
861
(
2005
).
17.
D. W. M.
Hofmann
,
L. N.
Kuleshova
,
F.
Hofmann
, and
B.
D'Aguanno
,
Chem. Phys. Lett.
475
,
149
(
2009
).
18.
D. W. M.
Hofmann
and
L. N.
Kuleshova
,
Crystallog. Rep.
51
,
419
(
2006
).
19.
D. W. M.
Hofmann
and
L. N.
Kuleshova
,
Data Mining in Crystallography
(
Springer-Verlag
,
Berlin
,
2010
).
20.
C.
Lee
,
D.
Vanderbilt
,
K.
Laasonen
,
R.
Car
, and
M.
Parrinello
,
Phys. Rev. Lett.
69
,
462
(
1992
).
21.
C.
Lobban
,
J. L.
Finney
, and
W. F.
Kuhs
,
Nature (London)
391
,
268
(
1998
).
23.
24.
W.
Smith
,
CCLRC, Daresbury Laboratory, England
.
25.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem Phys.
1
,
515
(
1933
).
26.
L.
Verlet
,
Phys. Rev.
159
,
98
(
1967
).
27.
A. K.
Soper
,
Chem. Phys.
258
,
121
(
2000
).
28.
C.
Vega
,
C.
McBride
,
E.
Sanz
, and
J. L.F.
Abascal
,
Phys. Chem. Chem. Phys.
7
,
1450
(
2005
).
29.
M.
Martin-Conde
,
L. G.
MacDowell
, and
C.
Vega
,
J. Chem. Phys.
125
,
116101
(
2006
).
30.
W. F.
Kuhs
and
M. S.
Lehmann
,
J. Phys. Chem.
87
,
4312
(
1983
).
31.
M. D.
Morse
and
S. A.
Rice
,
J. Chem. Phys.
74
,
6514
(
1981
).
You do not currently have access to this content.