In many biological and small scale technological applications particles may transiently bind to a cylindrical surface. In between two binding events the particles diffuse in the bulk, thus producing an effective translation on the cylindrical surface. We here derive the effective motion on the surface allowing for additional diffusion on the cylindrical surface itself. We find explicit solutions for the number of adsorbed particles at one given instant, the effective surface displacement, as well as the surface propagator. In particular sub- and superdiffusive regimes are found, as well as an effective stalling of diffusion visible as a plateau in the mean squared displacement. We also investigate the corresponding first passage problem.
REFERENCES
1.
O. V.
Bychuk
and B.
O'shaughnessy
, Phys. Rev. Lett.
74
, 1795
(1995
).2.
O. V.
Bychuk
and B.
O'shaugnessy
, J. Chem. Phys.
101
, 772
(1994
).3.
J. A.
Revelli
, C. E.
Budde
, D.
Prato
, and H. S.
Wio
, New J. Phys.
7
, 16
(2005
).4.
R.
Valiullin
, R.
Kimmich
, and N.
Fatkullin
, Phys. Rev. E
56
, 4371
(1997
).5.
P.
Levitz
, M.
Zinsmeister
, P.
Davidson
, D.
Constantin
, and O.
Poncelet
, Phys. Rev. E
78
, 030102
–R
(2008
).6.
A. V.
Chechkin
, I. M.
Zaid
, M. A.
Lomholt
, I. M.
Sokolov
, and R.
Metzler
, Phys. Rev. E
79
, 040105
–R
(2009
).7.
R.
Metzler
and J.
Klafter
, Phys. Rep.
339
, 1
(2000
);R.
Metzler
and J.
Klafter
, J. Phys. A
37
, R161
(2004
).8.
9.
R.
Kimmich
, S.
Stapf
, P.
Callaghan
, and A.
Coy
, Mag. Reson. Imaging
12
, 339
(1994
).10.
S.
Stapf
, R.
Kimmich
and R.-O.
Seitter
, Phys. Rev. Lett.
75
, 2855
(1995
).11.
M. V.
Velosoa
, A. G. Souza
Filhoa
, J. Mendes
Filhoa
, and S. B.
Faganb
, Chem. Phys. Lett.
430
, 71
(2006
).12.
M. A.
Lomholt
, B. V. D.
Broek
, S.-M. J.
Kalisch
, G. J. L.
Wuite
, and R.
Metzler
, Proc. Natl. Acad. Sci. U.S.A.
106
, 8204
(2009
);
[PubMed]
C.
Loverdo
, O.
Bénichou
, R.
Voituriez
, A.
Biebricher
, I.
Bonnet
, and P.
Desbiolles
, Phys. Rev. Lett.
102
, 188101
(2009
).
[PubMed]
13.
O. G.
Berg
and C.
Blomberg
, Biophys. Chem.
4
, 367
(1976
).14.
I.
Bonnet
, A.
Biebricher
, P.-L.
Porté
, C.
Loverdo
, O.
Bénichou
, R.
Voituriez
, C.
Escudé
, W.
Wende
, A.
Pingoud
, and P.
Desbiolles
, Nucleic. Acids Res.
36
, 4118
(2008
);
[PubMed]
B. v. d.
Broek
, M. A.
Lomholt
, S.-M. J.
Kalisch
, R.
Metzler
, and G. J. L.
Wuite
, Proc. Natl. Acad. Sci. U.S.A.
105
, 15738
(2008
).
[PubMed]
15.
Y. M.
Wang
, R. H.
Austin
, and E. C.
Cox
, Phys. Rev. Lett.
97
, 048302
(2006
).16.
C.
Bustamante
, Y. R.
Chemla
, N. R.
Forde
, and D.
Izhaky
, Ann. Rev. Biochem.
73
, 705
(2004
).17.
S. I.
Coyne
and N. H.
Mendelson
, Infection and Immunity
12
, 1189
(1975
).18.
O.
Bénichou
, D.
Grebenkov
, P.
Levitz
, C.
Loverdo
, and R.
Voituriez
, Phys. Rev. Lett.
105
, 150606
(2010
).19.
20.
R. B.
Winter
, O. G.
Berg
, and P. H.
von Hippel
, Biochem. J.
20
, 6961
(1981
).21.
A. V.
Chechkin
, V. Yu.
Gonchar
, J.
Klafter
, R.
Metzler
, and L. V.
Tanatarov
, J. Stat. Phys.
115
, 1505
(2004
).22.
S. G.
Samko
, A. A.
Kilbas
, and O. I.
Marichev
, Fractional Integrals and Derivatives, Theory and Applications
(Gordon and Breach
, New York
, 1993
).24.
R.
Metzler
and J.
Klafter
, Europhys. Lett.
51
, 492
(2000
).25.
R.
Gorenflo
and F.
Mainardi
, in Fractals and Fractional Calculus in Continuum Mechanics
, edited by A.
Carpinteri
and F.
Mainardi
(Springer-Verlag
, New York
, 1997
), pp. 223
–276
.26.
27.
F.
Mainardi
, Y.
Luchko
, and G.
Pagnini
, Fractional. Calculus Appl. Anal.
4
, 153
(2001
);B. J.
West
and T. F.
Nonnenmacher
, Phys. Lett. A
278
, 255
(2001
).28.
R.
Metzler
and T. F.
Nonnenmacher
, Chem. Phys.
284
, 67
(2002
).29.
F.
Mainardi
, in Fractals and Fractional Calculus in Continuum Mechanics
, edited by A.
Carpinteri
and F.
Mainardi
, (Springer-Verlag
, New York
, 1997
), pp. 291
–348
.30.
In our problem we deal with a truncated Cauchy distribution, therefore the normalization factor in Eq. (70) is actually different from 1/π. However, as the truncation is accomplished by the rapidly decaying compressed Gaussian, the correction to 1/π is expected to be small, and the Cauchy part contains almost the entire probability,since t ≪ tκ.
\[\frac{2}{\pi }\int _0^{\sqrt{D_bt}}\frac{\kappa t}{z^2+\kappa ^2 t^2}dz= \frac{2}{\pi }\arctan \sqrt{\frac{t_{\kappa }}{t}}\approx 1,\]
31.
M.
Abramowitz
and I.
Stegun
, Handbook of Mathematical Functions
(Dover
, New York
, 1972
).32.
S.
Havlin
and G. H.
Weiss
, J. Stat. Phys.
58
, 1267
(1990
).33.
W.
Feller
, An Introduction to Probability Theory and Its Applications
(John Wiley & Sons
, New York
, 1968
), Vol. 2, Chap. XIII, Eqs. (5.15) and (5.17).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.