We propose a Debye-Hückel-like screening model (DESMO) that generalizes the familiar conductor-like screening model (COSMO) to solvents with non-zero ionic strength and furthermore provides a numerical generalization of the Debye-Hückel model that is applicable to non-spherical solute cavities. The numerical implementation of DESMO is based upon the switching/Gaussian (SWIG) method for smooth cavity discretization, which we have recently introduced in the context of polarizable continuum models (PCMs). This approach guarantees that the potential energy is a smooth function of the solute geometry and analytic gradients for DESMO are reported here. The SWIG formalism also facilitates analytic implementation of two other PCMs that are based on a screened Coulomb potential: the “integral equation formalism” (IEF-PCM) and the “surface and simulation of volume polarization for electrostatics” [SS(V)PE] method. Fully analytic implementations of these screened PCMs are reported here for the first time. Numerical results, for model systems where an exact solution of the linearized Poisson-Boltzmann equation is available, demonstrate that these screened PCMs are highly accurate. In realistic test cases, they are as accurate as the best available three-dimensional finite-difference methods. In polar solvents, DESMO is nearly as accurate as more sophisticated screened PCMs, but is significantly simpler and more efficient.

1.
A.
Warshel
and
J.
Åqvist
,
Annu. Rev. Biophys. Biophys. Chem.
20
,
267
(
1991
).
2.
B.
Honig
and
A.
Nicholls
,
Science
268
,
1144
(
1995
).
3.
D.
Bashford
and
D. A.
Case
,
Annu. Rev. Phys. Chem.
51
,
129
(
2000
).
4.
M.
Feig
and
C. L.
Brooks
 III
,
Curr. Opin. Struct. Biol.
14
,
217
(
2004
).
5.
N. A.
Baker
,
Methods. Enzymol.
383
,
94
(
2004
).
6.
N. A.
Baker
,
Curr. Opin. Struct. Biol.
15
,
137
(
2005
).
7.
A.
Warshel
,
P. K.
Sharma
,
M.
Kato
, and
W. W.
Parson
,
Biochim. Biophys. Acta
1764
,
1647
(
2006
).
8.
P.
Grochowski
and
J.
Trylska
,
Biopolymers
89
,
93
(
2008
).
9.
B. Z.
Lu
,
Y. C.
Zhou
,
M. J.
Holst
, and
J. A.
McCammon
,
Comm. Comp. Phys.
3
,
973
(
2008
).
10.
J.
Wang
,
C.
Tan
,
Y.-H.
Tan
,
Q.
Lu
, and
R.
Luo
,
Commun. Comput. Phys.
3
,
1010
(
2008
).
11.
A.
Onufriev
,
Annu. Rep. Comp. Chem.
4
,
125
(
2008
).
12.
A.
Onufriev
, in
Modeling Solvent Environments: Applications to Simulations of Biomolecules
, edited by
M.
Feig
(
Wiley-VCH
,
Hoboken
,
2010
), Chap. VI, pp.
127
165
.
13.
F.
Marchand
and
A.
Caflisch
, in
Modeling Solvent Environments: Applications to Simulations of Biomolecules
, edited by
M.
Feig
(
Wiley-VCH
,
Hoboken
,
2010
), Chap. IX, pp.
209
232
.
14.
E.-H.
Yap
and
T.
Head-Gordon
,
J. Chem. Theory Comput.
6
,
2214
(
2010
).
15.
C.
Amovilli
,
V.
Barone
,
R.
Cammi
,
E.
Cancés
,
M.
Cossi
,
B.
Mennucci
,
C. S.
Pomelli
, and
J.
Tomasi
,
Adv. Quantum Chem.
32
,
227
(
1999
).
16.
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
, in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
2003
), Vol.
8
, Chap. I, pp.
1
79
.
17.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
18.
C. J.
Cramer
and
D. G.
Truhlar
,
Chem. Rev.
99
,
2161
(
1999
).
19.
C. J.
Cramer
and
D. G.
Truhlar
, in
Trends and Perspectives in Modern Computational Science
, edited by
G.
Maroulis
and
T. E.
Simos
,
Lecture Series on Computer and Computational Sciences
(
Brill/VSP
,
Leiden
,
2006
), Vol.
6
, pp.
112
140
.
20.
C. J.
Cramer
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
760
(
2008
).
21.
A.
Papazyan
and
A.
Warshel
,
J. Phys. Chem. B
101
,
11254
(
1997
).
22.
W. W.
Parson
and
A.
Warshel
, in
Biophysical Techniques in Photosynthesis
, edited by
T. J.
Aartsma
and
J.
Matysik
(
Springer
,
New York
,
2008
), Vol.
2
, Chap. XX, pp.
401
420
.
23.
D. M.
Chipman
,
J. Chem. Phys.
120
,
5566
(
2004
).
24.
A.
Warshel
and
S. T.
Russell
,
Q. Rev. Biophys.
17
,
283
(
1984
).
25.
Y. Y.
Sham
,
Z. T.
Chu
, and
A.
Warshel
,
J. Phys. Chem. B
101
,
4458
(
1997
).
26.
M. J.
Schnieders
,
N. A.
Baker
,
P.
Ren
, and
J. W.
Ponder
,
J. Chem. Phys.
126
,
124114
(
2007
).
27.
I.
Lotan
and
T.
Head-Gordon
,
J. Chem. Theory Comput.
2
,
541
(
2006
).
28.
B. J.
Klein
and
G. R.
Pack
,
Biopolymers
22
,
2331
(
1983
).
29.
M. J.
Holst
and
F.
Saied
,
J. Comput. Chem.
16
,
337
(
1995
).
30.
R.
Gargallo
,
P. H.
Hünenberger
,
F. X.
Avilés
, and
B.
Oliva
,
Protein Sci.
12
,
2161
(
2003
).
31.
M.
Feig
,
A.
Onufriev
,
M. S.
Lee
,
W.
Im
,
D. A.
Case
, and
C. L.
Brooks
 III
,
J. Comput. Chem.
25
,
265
(
2004
).
32.
T. Z.
Lwin
,
R.
Zhou
, and
R.
Luo
,
J. Chem. Phys.
124
,
034902
(
2006
).
33.
C.
Tan
,
L.
Yang
, and
R.
Luo
,
J. Phys. Chem. B
110
,
18680
(
2006
).
34.
J.
Wang
,
C.
Tan
,
E.
Chanco
, and
R.
Luo
,
Phys. Chem. Chem. Phys.
12
,
1194
(
2010
).
35.
J.
Wang
and
R.
Luo
,
J. Comput. Chem.
31
,
1689
(
2010
).
36.
T.
Hou
,
J.
Wang
,
Y.
Li
, and
W.
Wang
,
J. Comput. Chem.
32
,
866
(
2011
).
37.
J.
Wang
,
Q.
Cai
,
Z.-L.
Li
,
H.-K.
Zhao
, and
R.
Luo
,
Chem. Phys. Lett.
468
,
112
(
2009
).
38.
A.
Klamt
and
G.
Schüürmann
,
J. Chem. Soc., Perkin Trans.
2
,
799
(
1993
).
39.
T. N.
Truong
and
E. V.
Stefanovich
,
Chem. Phys. Lett.
240
,
253
(
1995
).
40.
T. N.
Truong
,
U. N.
Nguyen
, and
E. V.
Stefanovich
,
Int. J. Quantum Chem., Symp.
30
,
1615
(
1996
).
41.
V.
Barone
and
M.
Cossi
,
J. Phys. Chem. A
102
,
1995
(
1998
).
42.
E.
Cancès
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
3032
(
1997
).
43.
B.
Mennucci
,
E.
Cancès
, and
J.
Tomasi
,
J. Phys. Chem. B
101
,
10506
(
1997
).
44.
B.
Mennucci
,
R.
Cammi
, and
J.
Tomasi
,
J. Chem. Phys.
109
,
2798
(
1998
).
45.
J.
Tomasi
,
B.
Mennucci
, and
E.
Cancès
,
J. Mol. Struct.: THEOCHEM
464
,
211
(
1999
).
46.
E.
Cancès
, in
Continuum Solvation Models in Chemical Physics
, edited by
B.
Mennucci
and
R.
Cammi
(
Wiley
,
New York
,
2007
), pp.
29
48
.
47.
D. M.
Chipman
,
J. Chem. Phys.
112
,
5558
(
2000
).
48.
E.
Cancès
and
B.
Mennucci
,
J. Chem. Phys.
114
,
4744
(
2001
).
49.
D. M.
Chipman
,
Theor. Chem. Acc.
107
,
80
(
2002
).
50.
A. W.
Lange
and
J. M.
Herbert
,
J. Chem. Phys.
133
,
244111
(
2010
).
51.
A. W.
Lange
and
J. M.
Herbert
, “
Symmetric versus asymmetric discretization of the integral equations in polarizable continuum solvation models
,”
Chem. Phys. Lett.
(in press).
52.
A. W.
Lange
and
J. M.
Herbert
,
J. Phys. Chem. Lett.
1
,
556
(
2010
).
53.
P.
Debye
and
E.
Hückel
,
Phys. Z.
24
,
185
(
1923
).
54.
P.
Debye
and
E.
Hückel
, in
Collected Papers of Peter J. W. Debye
(
Interscience Publishers
,
New York
,
1954
), pp.
217
263
.
55.
M. J.
Holst
, “
The Poisson-Boltzmann Equation: Analysis and Multilevel Numerical Solution
,” PhD thesis,
University of Illinois at Urbana-Champaign
,
1994
.
56.
J. G.
Kirkwood
,
J. Chem. Phys.
2
,
351
(
1934
).
57.
M.
Born
,
Phys. Z.
1
,
45
(
1920
).
58.
V.
Luzhkov
and
A.
Warshel
,
J. Comput. Chem.
13
,
199
(
1992
).
59.
A.
Papazyan
and
A.
Warshel
,
J. Chem. Phys.
107
,
7975
(
1997
).
60.
J. L.
Rivail
,
B.
Terryn
,
D.
Rinaldi
, and
M. F.
Ruiz-Lopez
,
J. Mol. Struct.: THEOCHEM
120
,
387
(
1985
).
61.
J. B.
Foresman
,
T. A.
Keith
,
K. B.
Wiberg
,
J.
Snoonian
, and
M. J.
Frisch
,
J. Phys. Chem.
100
,
16098
(
1996
).
62.
D. M.
Chipman
and
M.
Dupuis
,
Theor. Chem. Acc.
107
,
90
(
2002
).
63.
B.
Ginovska
,
D. M.
Camaioni
,
M.
Dupuis
,
C. A.
Schwerdtfeger
, and
Q.
Gil
,
J. Phys. Chem. A
112
,
10604
(
2008
).
64.
V. I.
Lebedev
,
USSR Comput. Math. Math. Phys.
15
,
44
(
1975
).
65.
D. M.
York
and
M.
Karplus
,
J. Phys. Chem. A
103
,
11060
(
1999
).
66.
B. A.
Gregersen
and
D. M.
York
,
J. Chem. Phys.
122
,
194110
(
2005
).
67.
M.
Cossi
,
G.
Scalmani
,
N.
Rega
, and
V.
Barone
,
J. Chem. Phys.
117
,
43
(
2002
).
68.
S.
Ten-no
,
Chem. Phys. Lett.
398
,
56
(
2004
).
69.
S.
Ten-no
,
J. Chem. Phys.
126
,
014108
(
2007
).
70.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
 Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
71.
A. W.
Lange
and
J. M.
Herbert
,
J. Am. Chem. Soc.
131
,
3913
(
2009
).
72.
R. K.
Scopes
,
Protein Purification: Principles and Practice
(
Springer-Verlag
,
New York
,
1994
).
73.
See supplementary material at http://dx.doi.org/10.1063/1.3592372 for a tabulation of parameters that define the test problems.
74.
N. A.
Baker
,
D.
Sept
,
S.
Joseph
,
M. J.
Holst
, and
J. A.
McCammon
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
10037
(
2001
).
75.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
,
J. Comput. Chem.
21
,
1049
(
2000
).
76.
B.
Lee
and
F. M.
Richards
,
J. Mol. Biol.
55
,
379
(
1971
).
77.
TINKER, version 4.2, http://dasher.wustl.edu/tinker.

Supplementary Material

You do not currently have access to this content.