The aim of this study was to investigate the connection between the lipid/amphiphile monolayer structure at the interface and its macroscopic/rheological properties, in particular, to establish the link between the fractality of the monolayer structure and its compressibility modulus. To that purpose we have used fractal analysis of images obtained by Brewster angle microscopy to infer the fractal dimension of the monolayer structure and relate its change to the corresponding changes in compressibility derived from a simultaneously measured π-A isotherm. The results of the study confirmed the starting assumption based on theoretical considerations that the fractal dimension of an amphiphilic monolayer and its compressibility should be correlated. We have shown that there exists a strong correlation between the fractal dimension and the corresponding compressibility modulus of different amphiphilic materials. Thus, confirming the link between the short ordered structure on the molecular level and the macroscopic property—compressibility of the monolayer. The established correlation between the fractal dynamics and compressibility modulus of the monolayer enabled identification of onset of percolation—a second-order phase transition that is otherwise not easy and unambiguously detectable. We have found that the signature of percolation in a monolayer, regardless of its composition, is the occurrence of a sharp increase (a jump) of compressibility modulus (at macroscopic level) at the characteristic value of the corresponding fractal dimension D = 1.89. This is the result of the abrupt establishment of a connected structure on the molecular level, consequently involving a change in the elastic properties of the monolayer on a macroscopic scale. The results of this investigation provide means for unambiguous identification of the onset of percolation in the Langmuir layer and should facilitate a more efficient application of the percolation theory in further study of processes and structures at the interface during the monolayer compression.

1.
D.
Möbius
and
R.
Miller
,
Organized Monolayers and Assemblies: Structure, Processes, and Function
(
Elsevier
,
Amsterdam
,
2002
).
2.
K. S.
Birdi
,
Self-assembly Monolayer Structures of Lipids and Macromolecules at Interfaces
(
Kluwer Academic/Plenum Publishers
,
New York
,
1999
).
3.
M. N.
Jones
and
D.
Chapman
,
Micelles, Monolayers, and Biomembranes
(
Wiley–Liss
,
New York
,
1995
).
4.
J. M.
Lehn
,
Supramolecular Chemistry
(
Wiley-VCH
,
Weinheim
,
1995
).
5.
A.
Ulman
,
An Introduction to Ultrathin Organic Films From Langmuir-Blodgett to Self-Assembly
(
Academic
,
San Diego
,
1991
).
6.
H.
Kuhn
and
D.
Möbius
, in
Physical Methods of Chemistry
, edited by
B. W.
Rossiter
and
R. C.
Baetzold
(
Wiley
,
UK
,
1993
), Vol. IXB.
7.
G.
Adam
and
M.
Delbrück
, in
Structural Chemistry and Molecular Biology
, edited by
A.
Rich
and
N.
Davidson
(
Freeman,
San Francisco
,
1968
).
8.
I. R.
Peterson
, in
Functional Organic and Polymeric Materials
, edited by
T. H.
Richardson
(
Wiley
,
New York
,
2000
).
9.
X. D.
Chen
,
S.
Lenhert
,
M.
Hirtz
,
N.
Lu
,
H.
Fuchs
, and
L. F.
Chi
,
Acc. Chem. Res.
40
,
393
(
2007
).
10.
H.
Berry
,
Biophys. J.
83
,
1891
(
2002
).
11.
H.
Möhwald
,
Ann. Rev. Phys. Chem.
41
,
441
(
1990
).
12.
M.
Lösche
and
H.
Möhwald
,
Rev. Sci. Instrum.
55
,
1968
(
1984
).
13.
V. Von
Tscharner
and
H. M.
McConnell
,
Biophys. J.
36
,
409
(
1981
).
14.
S.
Hénon
and
J.
Meunier
,
Rev. Sci. Instrum.
62
,
936
(
1991
).
15.
D.
Hönig
and
D.
Möbius
,
J. Phys. Chem.
95
,
4590
(
1991
).
16.
V. B.
Fainerman
and
D.
Vollhardt
,
J. Phys. Chem. B
107
,
3098
(
2003
).
17.
A.
Vollhardt
,
G.
Weidemann
, and
S.
Lang
,
J. Phys. Chem. B
108
,
3781
(
2004
).
18.
D.
Vollhardt
and
V. B.
Fainerman
,
Adv. Colloid Interface Sci.
127
,
83
(
2006
).
19.
D.
Vollhardt
and
R.
Wagner
,
J. Phys. Chem. B
110
,
14881
(
2006
).
20.
S. R.
Carino
and
R. S.
Duran
,
Macromol. Chem. Phys.
206
,
83
(
2005
).
21.
Z.
Kozarac
,
D.
Risovic
,
S.
Frka
, and
D.
Mobius
,
Marine Chemistry
96
,
99
(
2005
).
22.
K. J.
Edler
,
M.
Arrowsmith
,
M.
Hamilton
, and
S. P.
Rigby
,
J. Phys. Chem. B
109
,
6294
(
2005
).
23.
R. G.
Oliveira
,
M.
Tanaka
, and
B.
Maggio
,
J. Struct. Biol.
149
,
158
(
2005
).
24.
R.
Volinsky
,
F.
Gaboriaud
,
A.
Berman
, and
R.
Jelinek
,
J. Phys. Chem. B
106
,
9231
(
2002
).
25.
D. J.
Robinson
and
J. C.
Earnshaw
,
Phys. Rev. A
46
,
2045
(
1992
).
26.
S. L.
Keller
,
Langmuir
19
,
1451
(
2003
).
27.
M. C.
Phillips
,
D. E.
Graham
, and
H.
Hauser
,
Nature
254
,
154
(
1975
).
28.
Z. W.
Yu
,
J.
Jin
, and
Y.
Cao
,
Langmuir
18
,
4530
(
2002
).
29.
S.
Ali
,
J. M.
Smaby
,
M. M.
Momsen
,
H. L.
Brockman
, and
R. E.
Brown
,
Biophys. J.
74
,
338
(
1998
).
30.
J. M.
Smaby
,
V. S.
Kulkarni
,
M.
Momsen
, and
R. E.
Brown
,
Biophys. J.
70
,
868
(
1996
).
31.
J. M.
Smaby
,
M.
Momsen
,
H. L.
Brockman
, and
R. E.
Brown
,
Biophys. J.
72
,
315
(
1997
).
32.
D.
Vollhardt
and
R.
Wagner
,
J. Phys. Chem. B
110
,
14881
(
2006
).
33.
A.
Gopal
and
K. Y. C.
Lee
,
J. Phys. Chem. B
110
,
22079
(
2006
).
34.
F.
Monroy
,
F.
Ortega
,
R. G.
Rubio
,
H.
Ritacco
, and
D.
Langevin
,
Phys. Rev. Lett.
95
,
056103
(
2005
).
35.
A. R.
Honerkamp-Smith
,
P.
Cicuta
,
M. D.
Collins
,
S. L.
Veatch
,
M.
den Nijs
,
M.
Schick
, and
S. L.
Keller
,
Biophys. J.
95
,
236
(
2008
).
36.
P.
Attard
,
Thermodynamics and Statistical Mechanics
(
Elsevier
,
New York
,
2002
).
37.
J. M. Bomont, in
Advances in Chemical Physics
, Vol.
139
, edited by
S. A.
Rice
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2008
).
38.
J. G. L.
Gaines
,
Insoluble Monolayers at Liquid-Gas Interfaces
(
Wiley Interscience
,
New York
,
1966
).
39.
S. C.
Dultz
and
H. W.
Jiang
,
Phys. Rev. Lett.
84
,
4689
(
2000
).
40.
E. A.
Galaktionov
,
G. D.
Allison
,
M. M.
Fogler
,
A. K.
Savchenko
,
S. S.
Safonov
,
M. Y.
Simmons
, and
D. A.
Ritchie
,
Physica E
(Amsterdam)
34
,
240
(
2006
).
41.
S.
Chakravarty
,
S.
Kivelson
,
C.
Nayak
, and
K.
Voelker
,
Philos. Mag. B
79
,
859
(
1999
).
42.
Q. M.
Si
and
C. M.
Varma
,
Phys. Rev. Lett.
81
,
4951
(
1998
).
43.
J.
Feder
,
Fractals
(
Plenum
,
New York
,
1988
).
44.
P.
Meakin
,
Fractals, Scaling and Growth Far from Equilibrium
(
Cambridge University Press
,
Cambridge
,
1998
).
45.
M. R.
Othman
,
N. N. N.
Mustafa
, and
A. L.
Ahmad
,
Microporous Mesoporous Mater.
91
,
268
(
2006
).
46.
D.
Risovic
,
B.
Gasparovic
, and
B.
Cosovic
,
J Phys. Chem. B
106
,
9810
(
2002
).
47.
B.
Gašparović
,
D.
Risović
, and
B.
Ćosović
,
J. Electroanal. Chem.
573
,
391
(
2004
).
48.
D.
Risović
,
B.
Gašparović
, and
B.
Ćosović
,
Langmuir
17
,
1088
(
2001
).
49.
D.
Risović
,
B.
Gašparović
, and
B.
Ćosović
,
Colloid Surf. A: Phys. Eng. Asp.
223
,
145
(
2003
).
50.
D.
ben-Avraham
and
S.
Havlin
,
Diffusion and Reactions in Fractals and Disordered Systems
(
Cambridge University Press
,
Cambridge
,
2005
).
51.
V. A.
Markel
,
V. M.
Shalaev
, and
E. Y.
Poliakov
, in
Fractal Frontiers
, edited by
M. M.
Novak
and
T. G.
Dewey
(
World Scientic
,
Singapore
,
1997
).
52.
P. W.
Schmidt
, in
The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers
, edited by
D.
Avnir
(
Wiley
,
New York
,
1989
), pp.
67
79
.
53.
G.
Grimmett
,
Percolation and Disordered Systems
(
Springer Verlag
,
Berlin
,
1997
).
54.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
(
Taylor & Francis
,
London
,
1994
).
55.
D.
Sornette
,
Critical Phenomena in Natural Sciences
(
Springer Verlag
,
Berlin
,
2006
).
56.
T.
Nakayama
and
K.
Yakubo
,
Fractal Concepts in Condensed Matter Physics
(
Springer Verlag
,
Berlin
,
2003
).
57.
Hiroyuki
Sasaki
, National Institute of Livestock and Grassland Science Nishinasuno, Land Evaluation Lab, Tochigi 329-2793, Japan http://cse.naro.affrc.go.jp/sasaki/fractal/fractal-e.html.
58.
K.
Falconer
,
Fractal Geometry, Mathematical Foundations and Applications
(
Wiley
,
New York
,
1990
).
59.
V. M.
Kaganer
,
H.
Mohwald
, and
P.
Dutta
,
Rev. Mod. Phys.
71
,
779
(
1999
).
60.
M.
Lösche
,
H. P.
Duwe
, and
H.
Möhwald
,
J. Colloid Interface Sci.
126
,
432
(
1988
).
61.
D. J.
Benvegnu
and
H. M.
Mcconnell
,
J. Phys. Chem.
97
,
6686
(
1993
).
62.
M. N.
Islam
and
T.
Kato
,
J. Colloid Interface Sci.
294
,
288
(
2006
).
63.
H. M. Mc
Connell
,
Ann. Rev. Phys. Chem.
42
,
171
(
1991
).
64.
O.
Albrecht
,
H.
Gruler
, and
E.
Sackmann
,
J. Colloid Interface Sci.
79
,
319
(
1981
).
65.
A. M.
Bibo
,
C. M.
Knobler
, and
I. R.
Peterson
,
J. Phys. Chem.
95
,
5591
(
1991
).
66.
67.
J. T.
Davies
and
E. K.
Rideal
,
Interfacial Phenomena
(
Academic
,
New York
,
1963
).
68.
A.
Lucero
,
M. R. R.
Nino
,
A. P.
Gunning
,
V. J.
Morris
,
P. J.
Wilde
, and
J. M. R.
Patino
,
J. Phys. Chem. B
112
,
7651
(
2008
).
You do not currently have access to this content.