Halogenated volatile anesthetics are frequently used for inhaled anesthesia in clinical practice. No appropriate biological method has been available for visualizing their localization in action. Therefore, despite their frequent use, the mechanism of action of these drugs has not been fully investigated. We measured coherent anti-Stokes Raman scattering (CARS) spectra of sevoflurane and isoflurane, two of the most representative volatile anesthetics, and determined the low-frequency vibrational modes without nonresonant background disturbance. Molecular dynamics calculations predict that these modes are associated with multiple halogen atoms. Because halogen atoms rarely appear in biological compounds, the entire spectral landscape of these modes is expected to be a good marker for investigating the spatial localization of these drugs within the intracellular environment. Using live squid giant axons, we could detect the unique CARS spectra of sevoflurane for the first time in a biological setting.

1.
E.
Salmi
,
K. K.
Kaisti
,
L.
Metsähonkala
,
V.
Oikonen
,
S.
Aalto
,
K.
Någren
,
S.
Hinkka
,
J.
Hietala
,
E. R.
Korpi
, and
H.
Scheinin
,
Anesth. Analg.
99
,
1420
(
2004
). See: http://www.hubmed.org/display.cgi?uids=15502041.
2.
S. A.
Zimmerman
,
M. V.
Jones
, and
N. L.
Harrison
,
J. Pharmacol. Exp. Ther.
270
,
987
(
1994
). See: http://www.hubmed.org/display.cgi?uids=7932211.
3.
F. E.
Gyulai
,
M. A.
Mintun
, and
L. L.
Firestone
,
Anesthesiology
95
,
585
(
2001
). See: http://www.hubmed.org/display.cgi?uids=11575528.
4.
H.
Yang
,
G.
Liang
,
B. J.
Hawkins
,
M.
Madesh
,
A.
Pierwola
, and
H.
Wei
,
Anesthesiology
109
,
243
(
2008
). See: http://www.hubmed.org/display.cgi?uids=18648233.
5.
D.
Oron
,
N.
Dudovich
, and
Y.
Silberberg
,
Phys. Rev. Lett.
89
,
273001
(
2002
).
6.
E.
Potma
,
C.
Evans
, and
X.
Xie
,
Opt. Lett.
31
,
241
(
2006
).
7.
S.
Postma
,
A.
van Rhijn
,
J.
Korterik
,
P.
Gross
,
J.
Herek
, and
H.
Offerhaus
,
Opt. Express
16
,
7985
(
2008
).
8.
D.
Oron
,
N.
Dudovich
,
D.
Yelin
, and
Y.
Silberberg
,
Phys. Rev. Lett.
88
,
63004
(
2002
).
9.
T.
Kee
,
H.
Zhao
, and
M.
Cicerone
,
Opt. Express
14
,
3631
(
2006
).
10.
O.
Katz
,
A.
Natan
,
Y.
Silberberg
, and
S.
Rosenwaks
,
Appl. Phys. Lett.
92
,
171116
(
2008
).
11.
S.
Lim
,
A.
Caster
, and
S.
Leone
,
Opt. Lett.
32
,
1332
(
2007
).
12.
G. I.
Petrov
,
R.
Arora
,
V. V.
Yakovlev
,
X.
Wang
,
A. V.
Sokolov
, and
M. O.
Scully
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
7776
(
2007
).
13.
S.
Roy
,
P.
Wrzesinski
,
D.
Pestov
,
T.
Gunaratne
,
M.
Dantus
, and
J. R.
Gord
,
Appl. Phys. Lett.
95
,
074102
(
2009
).
14.
S.
Roy
,
P. J.
Wrzesinski
,
D.
Pestov
,
M.
Dantus
, and
J. R.
Gord
,
J. Raman Spectrosc.
41
,
1194
(
2010
).
15.
H.
Rinia
,
M.
Bonn
,
M. M.
Müller
, and
E. M.
Vartiainen
,
ChemPhysChem
8
,
279
(
2007
).
16.
M.
Terasaki
,
A.
Schmidek
,
J.
Galbraith
,
P.
Gallant
, and
T.
Reese
,
Proc. Natl. Acad. Sci. U.S.A.
92
,
11500
(
1995
).
17.
S.
Terada
,
M.
Kinjo
, and
N.
Hirokawa
,
Cell
103
,
141
(
2000
).
18.
S.
Terada
,
M.
Kinjo
,
M.
Aihara
,
Y.
Takei
, and
N.
Hirokawa
,
EMBO J.
29
,
843
(
2010
).
19.
C.
Roothaan
,
Rev. Mod. Phys.
23
,
69
(
1951
).
20.
C.
Møller
and
M.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
21.
A.
Becke
,
Chem. Phys.
98
,
5648
(
1993
).
22.
A.
Becke
,
J. Chem. Phys.
104
,
1040
(
1996
).
23.
W.
Hehre
,
R.
Ditchfield
, and
J.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
24.
J.
Binkley
,
J.
Pople
, and
W.
Hehre
,
J. Am. Chem. Soc.
102
,
939
(
1980
).
25.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
V. G.
Zakrzewski
,
J. A.
Montgomery
 Jr.
,
R. E.
Stratmann
,
J. C.
Burant
,
S.
Dapprich
,
J. M.
Millam
,
A. D.
Daniels
,
K. N.
Kudin
,
M. C.
Strain
,
O.
Farkas
,
J.
Tomasi
,
V.
Barone
,
M.
Cossi
,
R.
Cammi
,
B.
Mennucci
,
C.
Pomelli
,
C.
Adamo
,
S.
Clifford
,
J.
Ochterski
,
G. A.
Petersson
,
P. Y.
Ayala
,
Q.
Cui
,
K.
Morokuma
,
P.
Salvador
,
J. J.
Dannenberg
,
D. K.
Malick
,
A. D.
Rabuck
,
K.
Raghavachari
,
J. B.
Foresman
,
J.
Cioslowski
,
J. V.
Ortiz
,
A. G.
Baboul
,
B. B.
Stefanov
,
G.
Liu
,
A.
Liashenko
,
P.
Piskorz
,
I.
Komaromi
,
R.
Gomperts
,
R. L.
Martin
,
D. J.
Fox
,
T.
Keith
,
M. A.
Al-Laham
,
C. Y.
Peng
,
A.
Nanayakkara
,
M.
Challacombe
,
P. M. W.
Gill
,
B.
Johnson
,
W.
Chen
,
M. W.
Wong
,
J. L.
Andres
,
C.
Gonzalez
,
M.
Head-Gordon
,
E. S.
Replogle
, and
J. A.
Pople
,
Gaussian 98
(
Gaussian, Inc.
,
Pittsburgh, PA
,
1998
).
26.
J.
Merrick
,
D.
Moran
, and
L.
Radom
,
J. Phys. Chem. A
111
,
11683
(
2007
).
27.
A.
Scott
and
L.
Radom
,
J. Phys. Chem.
100
,
16502
(
1996
).
28.
D.
Michalska
and
R.
Wysokinski
,
Chem. Phys. Lett.
403
,
211
(
2005
).
29.
V.
Krishnakumar
,
G.
Keresztury
,
T.
Sundius
, and
R.
Ramasamy
,
J. Mol. Struct.
702
,
9
(
2004
).
30.
See: SDBSWeb, http://riodb01.ibase.aist.go.jp/sdbs/ for National Institute of Advanced Industrial Science and Technology, Japan.
31.
C.
Cleeton
and
R.
Dufford
,
Phys. Rev.
37
,
362
(
1931
).
32.
A.
Anderson
,
G.
Sloka
, and
W.
Smith
,
J. Raman Spectrosc.
27
,
699
(
1998
).
33.
R.
Van Wagenen
,
D.
Westenskow
,
R.
Benner
,
D.
Gregonis
, and
D.
Coleman
,
J. Clin. Monit. Comp.
2
,
215
(
1986
).
34.
D.
Gregonis
,
R.
Van Wagenen
,
D.
Coleman
, and
J.
Mitchell
,
Proc. SPIE
1336
,
247
(
1990
).
35.
P.
Polavarapu
,
A.
Cholli
, and
G.
Vernice
,
J. Am. Chem. Soc.
114
,
10953
(
1992
).
36.
A.
Volkmer
,
J. Phys. D: Appl. Phys.
38
,
R59
(
2005
).
You do not currently have access to this content.