It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al. [J. Phys. Chem. B, 113, 11959 (2009)] to be underestimated by different GGA functionals for exchange and correlation, and corrected by the addition of interatomic pair potentials to describe van der Waals (vdW) interactions. In this contribution we present a DFT-AIMD study of liquid water using several GGA functionals as well as the van der Waals density functional (vdW-DF) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. As expected, we find that the density of water is grossly underestimated by GGA functionals. When a vdW-DF is used, the density improves drastically and the experimental diffusivity is reproduced without the need of thermal corrections. We analyze the origin of the density differences between all the functionals. We show that the vdW-DF increases the population of non-H-bonded interstitial sites, at distances between the first and second coordination shells. However, it excessively weakens the H-bond network, collapsing the second coordination shell. This structural problem is partially associated to the choice of GGA exchange in the vdW-DF. We show that a different choice for the exchange functional is enough to achieve an overall improvement both in structure and diffusivity.

1.
J.
Grossman
,
E.
Schwegler
,
E.
Draeger
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
120
,
300
(
2004
).
2.
E.
Schwegler
,
J.
Grossman
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
121
,
5400
(
2004
).
3.
D.
Asthagiri
,
L.
Pratt
, and
J.
Kress
,
Phys. Rev. E
68
,
41505
(
2003
).
4.
M. V.
Fernandez-Serra
and
E.
Artacho
,
J. Chem. Phys.
121
,
11136
(
2004
).
5.
P.
Sit
and
N.
Marzari
,
J. Chem. Phys.
122
,
204510
(
2005
).
6.
H.
Lee
and
M.
Tuckerman
,
J. Chem. Phys.
125
,
154507
(
2006
).
7.
M.
Guidon
,
F.
Schiffmann
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Phys.
128
,
214104
(
2008
).
8.
I.-F. W.
Kuo
,
C. J.
Mundy
,
M. J.
McGrath
,
J. I.
Siepmann
,
J.
VandeVondele
,
M.
Sprik
,
J.
Hutter
,
B.
Chen
,
M. L.
Klein
,
F.
Mohamed
,
M.
Krack
, and
M.
Parrinello
,
J. Phys. Chem. B
108
,
12990
(
2004
).
9.
I.-F. W.
Kuo
,
C. J.
Mundy
,
M. J.
McGrath
, and
J. I.
Siepmann
,
J. Chem. Theory Comput.
2
,
1274
(
2006
).
10.
J.
Schmidt
,
J.
VandeVondele
,
I.-F. W.
Kuo
,
D.
Sebastiani
,
J. I.
Siepmann
,
J.
Hutter
, and
C. J.
Mundy
,
J. Phys. Chem. B
113
,
11959
(
2009
).
11.
R.
Mills
,
J. Chem. Phys.
77
,
685
(
1973
).
12.
A.
Soper
,
Chem. Phys.
258
,
121
(
2000
).
13.
J.
Sorenson
,
G.
Hura
,
R.
Glaeser
, and
T.
Head-Gordon
,
J. Chem. Phys.
113
,
9149
(
2000
).
14.
M.
Allesch
,
F.
Lightstone
,
E.
Schwegler
, and
G.
Galli
,
J. Chem. Phys.
128
,
014501
(
2008
).
15.
M.
Sharma
,
R.
Resta
, and
R.
Car
,
Phys. Rev. Lett.
95
,
187401
(
2005
).
16.
G.
Cicero
,
J.
Grossman
,
E.
Schwegler
,
F.
Gygi
, and
G.
Galli
,
J. Am. Chem. Soc.
130
,
1871
(
2008
).
17.
J.
Morrone
and
R.
Car
,
Phys. Rev. Lett.
101
,
017801
(
2008
).
18.
B.
Chen
,
I.
Ivanov
,
M.
Klein
, and
M.
Parrinello
,
Phys. Rev. Lett.
91
,
215503
(
2003
).
19.
S.
Habershon
,
T.
Markland
, and
D.
Manolopoulos
,
J. Chem. Phys.
131
,
024501
(
2009
).
20.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
21.
J.
VandeVondele
,
F.
Mohamed
,
M.
Krack
,
J.
Hutter
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
122
,
014515
(
2004
).
22.
M.
McGrath
,
J.
Siepmann
,
I.
Kuo
,
C.
Mundy
,
J.
VandeVondele
,
J.
Hutter
,
F.
Mohamed
, and
M.
Krack
,
J. Phys. Chem. A
110
,
640
(
2006
).
23.
E.
Schwegler
,
G.
Galli
, and
F.
Gygi
,
Phys. Rev. Lett.
84
,
2429
(
2000
).
24.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
25.
C.
Lee
,
W.
Yang
, and
R.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
26.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
27.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
28.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
29.
W.
Kohn
and
L.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
30.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
31.
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
32.
G.
Román-Pérez
and
J. M.
Soler
,
Phys. Rev. Lett.
103
,
096102
(
2009
).
33.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
34.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
35.
P.
Ordejón
,
E.
Artacho
, and
J. M.
Soler
,
Phys. Rev. B
53
,
10441
(
1996
).
36.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
J. J. A.
García
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter.
14
,
2745
(
2002
).
37.
J.
Junquera
,
O.
Paz
,
D.
Sánchez-Portal
, and
E.
Artacho
,
Phys. Rev. B
64
,
235111
(
2001
).
38.
E.
Anglada
,
J. M.
Soler
,
J.
Junquera
, and
E.
Artacho
,
Phys. Rev. B
66
,
205101
(
2002
).
39.
See supplementary material at http://dx.doi.org/10.1063/1.3521268 for detailed information on the two basis sets used in this study, a graph of the radial distribution functions as a function of the pressure, the O-H and H-H radial distribution functions, for a comparison of the structure factors calculated for PBE and DRSLL-PBE, the mean square displacements plots of the point with largest uncertainty, the RDF decomposition calculated for revPBE and DRSLL.
40.
M. J.
McGrath
,
J. I.
Siepmann
,
I.-F. W.
Kuo
, and
C. J.
Mundy
,
Mol. Phys.
104
,
3619
(
2006
b).
41.
W.
Jorgensen
,
J.
Chandrasekhar
,
J.
Madura
, and
M.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
42.
All the classical MD simulations were performed with the GROMACS package. Coulomb interactions were treated using a particle mesh Ewald summation and vdW interactions were treated using a cut-off distance of 1/2 times the lattice parameter and applying long-range corrections to both the energy and pressure.
43.
H.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
,
Comput. Phys. Commun.
91
,
43
(
1995
).
44.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model.
7
,
306
(
2001
).
45.
S.
Nose
,
J. Chem. Phys.
81
,
511
(
1984
).
46.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
47.
M.
Allen
and
D.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1987
).
48.
M. V.
Fernandez-Serra
,
G.
Ferlat
, and
E.
Artacho
,
Mol. Simul.
31
,
361
(
2005
).
49.
T.
Kuhne
,
M.
Krack
, and
M.
Parrinello
,
J. Chem. Theory. Comput.
5
,
235
(
2009
).
50.
B.
Dunweg
and
K.
Kremer
,
J. Chem. Phys.
99
,
6983
(
1993
).
51.
F.
Mallamace
,
C.
Branca
,
M.
Broccio
,
C.
Corsaro
,
C.
Mou
, and
S.
Chen
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18387
(
2007
).
52.
D.
Paschek
,
Phys. Rev. Lett.
94
,
217802
(
2005
).
53.
G.
Hura
,
D.
Russo
,
R. M.
Glaeser
,
T.
Head-Gordon
,
M.
Krack
, and
M.
Parrinello
,
Phys. Chem. Chem. Phys.
5
,
1981
(
2003
).
54.
A. K.
Soper
,
J. Phys.: Conden. Matter
19
,
335206
(
2007
).
55.
D.
Ceperley
and
B.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
56.
J.
Perdew
,
Phys. Rev. Lett.
55
,
1665
(
1985
).
57.
X.
Wu
,
M.
Vargas
,
S.
Nayak
,
V.
Lotrich
, and
G.
Scoles
,
J. Chem. Phys.
115
,
8748
(
2001
).
58.
E.
Tsiper
,
Phys. Rev. Lett.
94
,
013204
(
2005
).
59.
S.
Tsuzuki
and
H.
Lüthi
,
J. Chem. Phys.
114
,
3949
(
2001
).
60.
L.
I.-Chun
,
A. P.
Seitsonen
,
M. D.
Coutinho-Neto
,
I
Tavernelli
, and
U.
Rothlisberger
,
J. Phys. Chem. B
113
,
1127
(
2009
).
61.
G.
Murdachaew
,
C. J.
Mundy
, and
G. K.
Schenter
,
J. Chem. Phys.
132
,
164102
(
2010
).
62.
N.
Giovambattista
,
F. W.
Starr
,
F.
Sciortino
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Phys. Rev. E
65
,
041502
(
2002
).
63.
All the pentamer calculations in this table are performed using the full basis for the 64 molecules within the unit cell, as taken from the snapshot, and therefore are BSSE (basis set superposition error) corrected.
64.
D. C.
Langreth
,
B. I.
Lundqvist
,
S. D.
Chakarova-Käck
,
V. R.
Cooper
,
M.
Dion
,
P.
Hyldgaard
,
A.
Kelkkanen
,
J.
Kleis
,
L.
Kong
,
Shen
Li
,
P. G.
Moses
,
E.
Murray
,
A.
Puzder
,
H.
Rydber
,
E.
Schröder
, and
T.
Thonhauser
,
J. Phys.: Condens. Matter
21
,
084203
(
2009
).
65.
J.
Klimes
,
D. R.
Bowler
, and
A.
Michaelides
,
J. Phys.: Condensed Matter
22
,
022201
(
2010
).
66.
K.
Lee
,
E.
Murray
,
L.
Kong
,
B.
Lundqvist
, and
D.
Langreth
,
Phys. Rev. B
82
,
081101
R
(
2010
).
67.
I. M.
Svishchev
and
P. G.
Kusalik
,
J. Chem. Phys.
99
,
3049
(
1993
).
68.
A.
Soper
and
M.
Ricci
,
Phy. Rev. Lett.
84
,
2881
(
2000
).
69.
A.
Luzar
,
J. Chem. Phys.
113
,
10663
(
2000
).

Supplementary Material

You do not currently have access to this content.