The notion of heterogeneous dynamics in glasses, that is, the spatial and temporal variations of structural relaxation rates, explains many of the puzzling features of glass dynamics. The nature and the dynamics of these heterogeneities, however, have been very controversial. Single rhodamine B molecules in poly(vinyl acetate) at the glass transition reorient through sudden jumps. With a statistical search for the most likely break points in the logarithm of the ratio of the two perpendicular fluorescence polarizations, we determine the times of these angular jumps. We interpret these jumps as an indication for individual glass rearrangements in the vicinity of the probe molecule. Time-series analysis of the resulting sequence of waiting times between jumps shows that dynamic heterogeneities in the matrix exist, but are short lived. From the correlation of the logarithm of the waiting time between subsequent jumps, we determine an upper limit for the lifetime of heterogeneities in the sample. The correlation time of τhet = 32 s is three times shorter than the orientational correlation time of the probe molecule, τorient = 90 s, in the sample at this temperature, but 13 times longer than the structural relaxation time, τα = 2.5 s, estimated for this sample from dielectric experiments. We present a model for glass dynamics in which each rearrangement in one region causes a random change in the barrier height for subsequent rearrangements in a neighboring region. This model, which equates the dynamics of the heterogeneities with the dynamics of the glass itself and thus implies a factor of one between heterogeneity lifetime and structural relaxation time, successfully reproduces the statistics of the experimentally observed waiting time sequences.

1.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature
410
,
259
(
2001
).
2.
M. D.
Ediger
,
C. A.
Angell
, and
S. R.
Nagel
,
J. Phys. Chem.
100
,
13200
(
1996
).
5.
M. D.
Ediger
,
Annu. Rev. Phys. Chem.
51
,
99
(
2000
).
6.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
7.
R.
Böhmer
,
G.
Diezemann
,
G.
Hinze
, and
H.
Sillescu
,
J. Chem. Phys.
108
,
890
(
1998
).
8.
B.
Schiener
,
R.
Böhmer
,
A.
Loidl
, and
R. V.
Chamberlin
,
Science
274
,
752
(
1996
).
9.
U.
Tracht
,
A.
Heuer
,
S. A.
Reinsberg
, and
H. W.
Spiess
,
Appl. Magn. Reson.
17
,
227
(
1999
).
10.
E. V.
Russell
and
N. E.
Israeloff
,
Nature
408
,
695
(
2000
).
11.
R.
Richert
,
J. Non-Cryst. Solids
307
,
50
(
2002
).
12.
C. Y.
Wang
and
M. D.
Ediger
,
J. Phys. Chem. B
103
,
4177
(
1999
).
13.
C. Y.
Wang
and
M. D.
Ediger
,
J. Chem. Phys.
112
,
6933
(
2000
).
14.
L. A.
Deschenes
and
D. A.
Vanden Bout
,
J. Phys. Chem. B
106
,
11438
(
2002
).
15.
S. A.
Mackowiak
,
T. K.
Herman
, and
L. J.
Kaufman
,
J. Chem. Phys.
131
,
244513
(
2009
).
16.
W. E.
Moerner
,
J. Phys. Chem. B
106
,
910
(
2002
).
17.
W. E.
Moerner
and
M.
Orrit
,
Science
283
,
1670
(
1999
).
18.
X. S.
Xie
and
J. K.
Trautman
,
Annu. Rev. Phys. Chem.
49
,
441
(
1998
).
19.
D. R.
Lide
, CRC Handbook of Chemistry and Physics, 84th ed., Chemical Rubber Company Press, Boca Raton, FL, 2003–2004.
20.
G. D.
Smith
,
F.
Liu
,
R. W.
Devereaux
, and
R. H.
Boyd
,
Macromolecules
25
,
703
(
1992
).
22.
T.
Plakhotnik
,
E. A.
Donley
, and
U. P.
Wild
,
Annu. Rev. Phys. Chem.
48
,
181
(
1997
).
23.
R. A. L.
Vallee
,
N.
Tomczak
,
G. J.
Vancso
,
L.
Kuipers
, and
N. F.
van Hulst
,
J. Chem. Phys.
122
,
114704
(
2005
).
24.
A. N.
Adhikari
,
N. A.
Capurso
, and
D.
Bingemann
,
J. Chem. Phys.
127
,
027732
(
2007
).
25.
D.
Bingemann
,
Chem. Phys. Lett.
433
,
234
(
2006
).
26.
L. P.
Watkins
and
H.
Yang
,
J. Phys. Chem. B
109
,
617
(
2005
).
27.
R. M.
Allen
and
D.
Bingemann
, “
Identification of Intensity Ratio Break Points in Ratiometric Single Molecule Spectroscopy
”, J. Phys. Chem. B (
2011
) (submitted).
28.
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Multidimensional Solid-State NMR and Polymers
(
Academic
,
London
,
1994
).
29.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
30.
H.
Yang
and
X. S.
Xie
,
J. Chem. Phys.
117
,
10965
(
2002
).
31.
A.
Heuer
,
J. Phys. Condens. Matter
20
,
373101
(
2008
).
32.
Y.
Jung
,
J. P.
Garrahan
, and
D.
Chandler
,
J. Chem. Phys.
123
,
084509
(
2005
).
33.
M.
Dzero
,
J.
Schmalian
, and
P. G.
Wolynes
,
Phys. Rev. B
80
,
024204
(
2009
).
34.
35.
M. T.
Cicerone
,
F. R.
Blackburn
, and
M. D.
Ediger
,
J. Chem. Phys.
102
,
471
(
1995
).
36.
M.
Yang
and
R.
Richert
,
Chem. Phys.
284
,
103
(
2002
).
37.
L. E.
Walther
,
N. E.
Israeloff
,
E. V.
Russell
, and
H. A.
Gomariz
,
Phys. Rev. B
57
,
15112
(
1998
).
38.
W.
Heinrich
and
B.
Stoll
,
Colloid Polym. Sci.
263
,
873
(
1985
).
39.
S. A.
Reinsberg
,
X. H.
Qiu
,
M.
Wilhelm
,
H. W.
Spiess
, and
M. D.
Ediger
,
J. Chem. Phys.
114
,
7299
(
2001
).
40.
X. H.
Qiu
and
M. D.
Ediger
,
J. Phys. Chem. B
107
,
459
(
2003
).
41.
U.
Tracht
,
M.
Wilhelm
,
A.
Heuer
,
H.
Feng
,
K.
Schmidt-Rohr
, and
H. W.
Spiess
,
Phys. Rev. Lett.
81
,
2727
(
1998
).
42.
J. P.
Garrahan
,
R. L.
Jack
,
V.
Lecomte
,
E.
Pitard
,
K.
van Duijvendijk
, and
F.
van Wijland
,
J. Phys. A: Math. Theor.
42
,
075007
(
2009
).
43.
R.
Richert
and
C. A.
Angell
,
J. Chem. Phys.
108
,
9016
(
1998
).
44.
M.
Vogel
,
B.
Doliwa
,
A.
Heuer
, and
S. C.
Glotzer
,
J. Chem. Phys.
120
,
4404
(
2004
).
45.
F.
Ritort
and
P.
Sollich
,
Adv. Phys.
52
,
219
(
2003
).
You do not currently have access to this content.