Vibrational spectra of methyl C–H stretching region are notoriously complicated, and thus a theoretical method of systematic assignment is strongly called for in condensed phase. Here we develop a unified analysis method of the vibrational spectra, such as infrared (IR), polarized and depolarized Raman, and ssp polarized sum frequency generation (SFG), by flexible and polarizable molecular dynamics simulation. The molecular model for methanol has been developed by charge response kernel model to allow for analyzing the methyl C–H stretching vibrations. The complicated spectral structure by the Fermi resonance has been unraveled by empirically shifting potential parameters, which provides clear information on the coupling mechanism. The analysis confirmed that for the IR, polarized Raman, and SFG spectra, two-band structure at about 2830 and 2950 |$\mathrm{cm}^{-1}$| cm 1 results from the Fermi resonance splitting of the methyl C–H symmetric stretching and bending overtones. In the IR spectrum, the latter, higher-frequency band is overlapped with prominent asymmetric C–H stretching bands. In the depolarized Raman spectrum, the high frequency band at about 2980 |$\mathrm{cm^{-1}}$| cm 1 is assigned to the asymmetric C–H stretching mode. In the SFG spectrum, the two bands of the splitted symmetric C–H stretching mode have negative amplitudes of imaginary nonlinear susceptibility |$\chi ^{(2)}$|χ(2), while the higher-frequency band is partly cancelled by positive imaginary components of asymmetric C–H stretching modes.

1.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations
(
Dover
,
New York
,
1955
).
2.
Y. R.
Shen
,
Proceedings of International School of Physics “Enrico Fermi
,” vol. CXX (
North Holland
,
Amsterdam
,
1994
).
3.
C.
Hirose
,
N.
Akamatsu
, and
K.
Domen
,
J. Chem. Phys.
96
,
997
(
1992
).
4.
C.
Hirose
,
H.
Yamamoto
,
N.
Akamatsu
, and
K.
Domen
,
J. Phys. Chem.
97
,
10064
(
1993
).
5.
H.
Wang
,
W.
Gan
,
R.
Lu
,
Y.
Rao
, and
B.
Wu
,
Int. Rev. Phys. Chem.
24
,
191
(
2005
).
6.
G.
Ma
and
H. C.
Allen
,
J. Phys. Chem. B
107
,
6343
(
2003
).
7.
R.
Lu
,
W.
Gan
,
B.-H.
Wu
,
Z.
Zhang
,
Y.
Guo
, and
H.-F.
Wang
,
J. Phys. Chem. B
109
,
14118
(
2005
).
8.
L.
Halonen
,
J. Chem. Phys.
15
,
7931
(
1997
).
9.
S.
Maeda
,
Y.
Watanabe
, and
K.
Ohno
,
J. Chem. Phys.
128
,
144111
(
2008
).
10.
G.
Palinkas
,
E.
Hawlicka
, and
K.
Heinzinger
,
J. Phys. Chem.
91
,
4334
(
1987
).
11.
J. W.
Caldwell
and
P. A.
Kallman
,
J. Phys. Chem.
99
,
6208
(
1995
).
12.
J.
Gao
,
D.
Habibollazadeh
, and
L.
Shao
,
J. Phys. Chem.
99
,
16460
(
1995
).
13.
E.
Tsuchida
,
Y.
Kanada
, and
M.
Tsukada
,
Chem. Phys. Lett.
311
,
236
(
1999
).
14.
H.
Torii
,
J. Phys. Chem. A
102
,
2843
(
1999
).
15.
B.
Chen
,
J. J.
Potoff
, and
J. I.
Siepmann
,
J. Phys. Chem. B
105
,
3093
(
2001
).
16.
M.
Pagliai
,
G.
Cardini
,
R.
Righini
, and
V.
Schettino
,
J. Chem. Phys.
119
,
6655
(
2003
).
17.
J. W.
Handgraaf
,
T. S.
van Erp
, and
E. J.
Meijer
,
Chem. Phys. Lett.
367
,
617
(
2003
).
18.
J. W.
Handgraaf
,
E. J.
Meijer
, and
M. P.
Gaigeot
,
J. Chem. Phys.
121
,
10111
(
2004
).
19.
S.
Paul
and
A.
Chandra
,
J. Chem. Theory Comput.
1
,
1221
(
2005
).
20.
H.
Yu
,
D. P.
Geerke
,
H.
Liu
, and
W. F.
van Gunsteren
,
J. Comput. Chem.
27
,
1494
(
2006
).
21.
M.
Valdez-Gonzalez
,
H.
Saint-Martin
,
J.
Hernandez-Cobos
,
R.
Ayala
,
E.
Sanchez-Marcos
, and
I.
Ortega-Blake
,
J. Chem. Phys.
127
,
224507
(
2007
).
22.
M.
Matsumoto
and
Y.
Kataoka
,
J. Chem. Phys.
90
,
2398
(
1989
).
23.
L. X.
Dang
and
T. M.
Chang
,
J. Chem. Phys.
119
,
9851
(
2003
).
24.
S.
Patel
and
C. L.
Brooks III
,
J. Chem. Phys.
122
,
024508
(
2005
).
25.
V. M.
Anisimov
,
I. V.
Vorobyov
,
B.
Roux
, and
A. D.
Mackerell
,
J. Chem. Theory Comput.
3
,
1927
(
2007
).
26.
I. F. W.
Kuo
,
C. J.
Mundy
,
M. J.
McGrath
, and
J. I.
Siepmann
,
J. Phys. Chem. C
112
,
15412
(
2008
).
27.
M.
Falk
and
E.
Whalley
,
J. Chem. Phys.
34
,
1554
(
1961
).
28.
W. F.
Passchier
,
E. R.
Klompmaker
, and
M.
Mandel
,
Chem. Phys. Lett.
4
,
485
(
1970
).
29.
J. E.
Bertie
,
S. L.
Zhang
,
H. H.
Eysel
,
S.
Baluja
, and
M. K.
Ahmed
,
Appl. Spectroscopy
47
,
1100
(
1993
).
30.
C. J.
Gruenloh
,
G. M.
Florio
,
J. R.
Carney
,
F. C.
Hagemeister
, and
T. S.
Zwier
,
J. Phys. Chem. A
103
,
496
(
1999
).
31.
M.
Schwartz
,
A.
Moradi-Araghi
, and
W. H.
Koehler
,
J. Mol. Struct.
63
,
279
(
1980
).
32.
M.
Schwartz
,
A.
Moradi-Araghi
, and
W. H.
Koehler
,
J. Mol. Struct.
81
,
245
(
1982
).
33.
T. W.
Zerda
,
M.
Bradley
, and
J.
Jonas
,
Chem. Phys. Lett.
117
,
566
(
1985
).
34.
G. S.
Devendorf
,
M. H. A.
Hu
, and
D.
Ben-Amotz
,
J. Phys. Chem. A
102
,
10614
(
1998
).
35.
A.
Arencibia
,
M.
Taravillo
,
F. J.
Pérez
,
J.
Núñez
, and
V. G.
Baonza
,
Phys. Rev. Lett.
89
,
195504
(
2002
).
36.
A.
Arencibia
,
M.
Taravillo
,
M.
Cáceres
,
J.
Núñez
, and
V. G.
Baonza
,
J. Chem. Phys.
123
,
214502
(
2005
).
37.
R.
Superfine
,
J. Y.
Huang
, and
Y. R.
Shen
,
Phys. Rev. Lett.
66
,
1066
(
1991
).
38.
K.
Wolfrum
,
H.
Graener
, and
A.
Laubereau
,
Chem. Phys. Lett.
213
,
41
(
1993
).
39.
C. D.
Stanners
,
Q.
Du
,
R. P.
Chin
,
P.
Cremer
,
G. A.
Somorjai
, and
Y. R.
Shen
,
Chem. Phys. Lett.
232
,
407
(
1995
).
40.
H.
Chen
,
W.
Gan
,
R.
Lu
,
Y.
Guo
, and
H.-F.
Wang
,
J. Phys. Chem. B
109
,
8064
(
2005
).
41.
J.
Sung
and
D.
Kim
,
J. Korean. Phys. Soc.
51
,
145
(
2007
).
42.
T.
Ishiyama
,
V. V.
Sokolov
, and
A.
Morita
,
J. Chem. Phys.
134
,
024509
(
2010
).
43.
A.
Morita
and
S.
Kato
,
J. Am. Chem. Soc.
119
,
4032
(
1997
).
44.
A.
Morita
and
S.
Kato
,
J. Chem. Phys.
108
,
6809
(
1998
).
45.
A.
Morita
and
S.
Kato
,
J. Phys. Chem. A
106
,
3909
(
2002
).
46.
S.
Iuchi
,
A.
Morita
, and
S.
Kato
,
J. Phys. Chem. B
106
,
3466
(
2002
).
47.
T.
Ishida
and
A.
Morita
,
J. Chem. Phys.
125
,
074112
(
2006
).
48.
T.
Ishiyama
and
A.
Morita
,
J. Chem. Phys.
131
,
244714
(
2009
).
49.
J. S.
Bader
and
B. J.
Berne
,
J. Chem. Phys.
100
,
8359
(
1994
).
50.
S. A.
Egorov
,
K. F.
Everitt
, and
J. L.
Skinner
,
J. Phys. Chem. A
103
,
9494
(
1999
).
51.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
52.
T.
Ishiyama
and
A.
Morita
,
J. Phys. Chem. C
111
,
721
(
2007
).
53.
T.
Ishiyama
and
A.
Morita
,
J. Phys. Chem. C
111
,
738
(
2007
).
54.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito
,
2000
).
55.
J. E.
Bertie
and
S. L.
Zhang
,
J. Chem. Phys.
101
,
8364
(
1994
).
56.
J. E.
Bertie
and
Z.
Lan
,
J. Chem. Phys.
103
,
10152
(
1995
).
57.
T.
Ishiyama
and
A.
Morita
,
Chem. Phys. Lett.
431
,
78
(
2006
).
58.
Y.
Nagata
and
S.
Mukamel
,
J. Am. Chem. Soc.
132
,
6434
(
2010
).
59.
S.
Twagirayezu
,
T. N.
Clasp
,
D. S.
Perry
,
J. L.
Neill
,
M. T.
Muckle
, and
B. H.
Pate
,
J. Phys. Chem. A
114
,
6818
(
2010
).
60.
J. E.
Bertie
and
S. L.
Zhang
,
J. Mol. Struct.
413-414
,
333
(
1997
).
61.
L. K.
Iwaki
and
D. D.
Dlott
,
Chem. Phys. Lett.
321
,
419
(
2000
).
62.
V.
Pogorelov
,
L.
Bulavin
,
I.
Doroshenko
,
O.
Fesjun
, and
O.
Veretennikov
,
J. Mol. Struct.
708
,
61
(
2004
).
63.
C. Y.
Wang
,
H.
Groenzin
, and
M. J.
Shultz
,
J. Phys. Chem. B
108
,
265
(
2004
).
64.
G.
Herzberg
,
Infrared and Raman Spectra of Polyatomic Molecules
(
D. Van Nostrand
,
New York
,
1945
).
65.
66.
A.
Morita
and
T.
Ishiyama
,
Phys. Chem. Chem. Phys.
10
,
5801
(
2008
).
67.
See supplementary material at http://dx.doi.org/10.1063/1.3514146 for the dipole derivative and the polarizability derivative with respect to the internal coordinate Sk of the CRK methanol |$\partial \mu _{p}/ \partial S_k$|μp/Sk and |$\partial \alpha _{pq}/ \partial S_k$|αpq/Sk of the present CRK methanol.

Supplementary Material

You do not currently have access to this content.