We extend to full dimensionality a recently developed wave packet method [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions and also increase the computational efficiency of the method. This is done by introducing a new set of product coordinates, by applying the Crank–Nicholson approximation to the angular kinetic energy part of the split-operator propagator and by using a symmetry-adapted basis-to-grid transformation to evaluate integrals over the potential energy surface. The newly extended method is tested on the benchmark OH + H

$_2$
2 → H
$_2$
2
O + H reaction, where it allows us to obtain accurately converged state-to-state reaction probabilities (on the Wu–Schatz–Fang–Lendvay–Harding potential energy surface) with modest computational effort. These methodological advances will make possible efficient calculations of state-to-state differential cross sections on this system in the near future.

1.
S. C.
Althorpe
and
D. C.
Clary
,
Annu. Rev. Phys. Chem.
54
,
493
(
2003
).
2.
D. H.
Zhang
,
J. Chem. Phys.
125
,
133102
(
2006
).
3.
G.
Schiffel
and
U.
Manthe
,
J. Chem. Phys.
132
,
191101
(
2010
).
5.
S. C.
Althorpe
,
F.
Fernández-Alonso
,
B. D.
Bean
,
J. D.
Ayers
,
A. E.
Pomerantz
,
R. N.
Zare
, and
E.
Wrede
,
Nature (London)
416
,
67
(
2002
).
6.
S. A.
Harich
,
D.
Dai
,
C. C.
Wang
,
X.
Yang
,
S. D.
Chao
, and
R. T.
Skodje
,
Nature (London)
419
,
281
(
2002
).
7.
D.
Dai
,
C. C.
Wang
,
S. A.
Harich
,
X.
Wang
,
X.
Yang
,
S. D.
Chao
,
R. T.
Skodje
,
Science
300
,
1730
(
2003
).
8.
J. C.
Juanes-Marcos
,
S. C.
Althorpe
, and
E.
Wrede
,
Science
309
,
1227
(
2005
).
9.
D.
Skouteris
,
D. E.
Manolopoulos
,
W. S.
Bian
,
H.-J.
Werner
,
L. H.
Lai
,
K. P.
Liu
,
Science
286
,
1713
(
1999
).
10.
M.
Qiu
,
Z.
Ren
,
L.
Che
,
D.
Dai
,
S. A.
Harich
,
X.
Wang
,
X.
Yang
,
C.
Xu
,
D.
Xie
,
M.
Gustafsson
,
R. T.
Skodje
,
Z.
Sun
, and
D. H.
Zhang
,
Science
311
,
1440
(
2006
).
11.
L.
Che
,
Z. F.
Ren
,
X. G.
Wang
,
W. R.
Dong
,
D. X.
Dai
,
X. Y.
Wang
,
D. H.
Zhang
,
X. M.
Yang
,
L. S.
Sheng
,
G. L.
Li
,
H.-J.
Werner
,
F.
Lique
, and
M. H.
Alexander
,
Science
317
,
1061
(
2007
).
12.
W. F.
Hu
and
G. C.
Schatz
,
J. Chem. Phys.
125
,
132301
(
2006
).
13.
M. T.
Cvitaš
,
P.
Soldán
,
J. M.
Hutson
,
P.
Honvault
, and
J. M.
Launay
,
J. Chem. Phys.
127
,
074302
(
2007
).
14.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
,
H. D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
15.
F.
Huarte-Larrañaga
and
U.
Manthe
,
J. Chem. Phys.
123
,
204114
(
2005
).
16.
S.
Bhattacharya
,
A. N.
Panda
, and
H.-D.
Meyer
,
J. Chem. Phys.
132
,
214304
(
2010
).
17.
D. H.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
100
,
2697
(
1994
).
18.
W.
Zhu
,
J.
Dai
,
J. H. Z.
Zhang
,
D. H.
Zhang
,
J. Chem. Phys.
105
,
4881
(
1996
).
19.
J.
Dai
,
W.
Zhu
,
J. H. Z.
Zhang
,
J. Phys. Chem.
100
,
13901
(
1996
).
20.
D. H.
Zhang
and
S. Y.
Lee
,
J. Chem. Phys.
110
,
4435
(
1999
).
21.
R. C.
Mowrey
,
J. Chem. Phys.
94
,
7096
(
1991
).
22.
T.
Peng
and
J. Z. H.
Zhang
,
J. Chem. Phys.
105
,
6072
(
1996
).
23.
S. C.
Althorpe
,
D. J.
Kouri
, and
D. K.
Hoffman
,
J. Chem. Phys.
107
,
7816
(
1997
).
24.
S. C.
Althorpe
,
J. Chem. Phys.
114
,
1601
(
2001
).
25.
M. T.
Cvitaš
S. C.
Althorpe
,
J. Phys. Chem. A
113
,
4557
(
2009
).
26.
M. T.
Cvitaš
and
S. C.
Althorpe
,
Phys. Scr.
80
,
048115
(
2009
).
27.
A.
Askar
and
A. S.
Cakmak
,
J. Chem. Phys.
68
,
2794
(
1978
).
28.
M. T.
Cvitaš
and
S. C.
Althorpe
,
Comput. Phys. Commun.
177
,
357
(
2007
).
29.
D.
Neuhauser
,
J. Chem. Phys.
100
,
9272
(
1994
).
30.
H.
Tal-Ezer
and
R.
Kosloff
,
J. Chem. Phys.
81
,
3967
(
1984
).
31.
E. M.
Goldfield
and
S. K.
Gray
,
J. Chem. Phys.
117
,
1604
(
2002
).
32.
S. K.
Gray
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
108
,
950
(
1998
).
33.
M.
Alagia
,
N.
Balucani
,
P.
Casavecchia
,
D.
Stranges
,
G. G.
Volpi
,
D. C.
Clary
,
A.
Kliescg
,
H. J.
Werner
,
Chem. Phys.
207
,
389
(
1996
).
34.
B. R.
Strazisar
,
C.
Lin
,
H. F.
Davis
,
Science
290
,
958
(
2000
).
35.
M.
Brouard
,
I.
Burak
,
S.
Marinakis
,
L.
Rubio Lago
,
P.
Tampkins
, and
C.
Vallance
,
J. Chem. Phys.
121
,
10426
(
2004
).
36.
M.
Yang
,
D. H.
Zhang
,
M. A.
Collins
, and
S. Y.
Lee
,
J. Chem. Phys.
115
,
174
(
2001
).
37.
G.-S.
Wu
,
G. C.
Schatz
,
G.
Lendvay
,
D.-C.
Fang
, and
L. B.
Harding
,
J. Chem. Phys.
113
,
3150
(
2000
).
38.
M.
Mladenović
,
J. Chem. Phys.
112
,
1070
(
2000
).
39.
M. D.
Feit
and
J. A.
Fleck
,
J. Chem. Phys.
78
,
301
(
1983
).
40.
Y.
Zhang
,
J.
Zhang
,
H.
Zhang
,
Q.
Zhang
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
115
,
8455
(
2001
).
41.
Y.
Huang
,
W.
Zhu
,
D. J.
Kouri
,
D. K.
Hoffman
,
J. Phys. Chem.
98
,
1868
(
1994
).
42.
D. H.
Zhang
and
J. C.
Light
,
J. Chem. Phys.
104
,
4544
(
1996
).
43.
R. T
Pack
,
J. Chem. Phys.
60
,
633
(
1974
).
44.
R. N.
Zare
,
Angular Momentum
(
Wiley
,
New York
,
1988
).
45.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes
(
Cambridge University Press
,
New York
,
1988
).
46.
J.
Echave
D. C.
Clary
,
Comput. Phys. Commun.
190
,
225
(
1992
).
47.
G. C.
Corey
and
J. W.
Tromp
,
J. Chem. Phys.
103
,
1812
(
1995
).
48.
G. C.
Corey
and
D.
Lemoine
,
J. Chem. Phys.
97
,
4115
(
1992
).
49.
R. Q.
Chen
and
H.
Guo
,
J. Chem. Phys.
110
,
2771
(
1999
).
50.
I. N.
Kozin
,
J.
Tennyson
,
M. M.
Law
,
Comput. Phys. Commun.
165
,
10
(
2005
).
51.
I. N.
Kozin
,
M. M.
Law
,
J.
Tennyson
, and
J. M.
Hutson
,
J. Chem. Phys.
122
,
064309
(
2003
).
52.
H.-S.
Lee
,
H.
Chen
, and
J. C.
Light
,
J. Chem. Phys.
119
,
4187
(
2003
).
53.
In principle, it is possible to gain a further speed up by further halving the number of points in φ using appropriately distributed GDVR points. If the number of GDVR points in φ is
$2^n$
2n
, where n is an integer, one would eventually reach the FFT performance limit. But, since the amount of computer memory is the main limiting factor for the feasibility of such calculations, restricting the size of GDVR in φ to powers of 2 is ineffective.
54.
D. E.
Manolopoulos
,
J. Chem. Phys.
117
,
9552
(
2002
).
55.
F. T.
Smith
,
J. Chem. Phys.
31
,
1352
(
1959
).
56.
E. U.
Condon
and
G. H.
Shortely
,
Theory of Atomic Spectra
(
Cambridge University Press
,
Cambridge, England
,
1935
).
57.
The Condon–Shortley convention requires
$ \langle j_1 j_1 j_{12} \: j_2-j_1| j_2 j_2 \rangle > 0$
j1j1j12j2j1|j2j2>0
. Using recursion relations for C.-G. coefficients (Ref. 44), one can show that the sign of
$ \langle j_1 j_2 j_{12} 0 | j_2 j_2 \rangle$
j1j2j120|j2j2
is
$(-1)^{j_1-j_2}$
(1)j1j2
for
$j_1 \ge j_2$
j1j2
. Changing the order of angular momenta in the C.-G. coefficient leads to
$ \langle j_1 j_2 j_2 -j_2| j_{12} 0 \rangle > 0$
j1j2j2j2|j120>0
. Similarly, one proves
$ \langle j_1 j_1 j_2 -j_1| j_{12} 0 \rangle > 0$
j1j1j2j1|j120>0
, for
$j_1 \le j_2$
j1j2
.
58.
D. J.
Kouri
D. K.
Hoffman
,
Few-Body Syst.
18
,
203
(
1995
).
59.
Y.
Huang
,
W.
Zhu
, and
D. J.
Kouri
,
Comput. Phys. Commun.
206
,
96
(
1993
).
60.
J.
Mayneris
,
M.
González
,
S. K.
Gray
,
Comput. Phys. Commun.
179
,
741
(
2008
).
61.
R. J.
Barber
,
J.
Tennyson
,
G. J.
Harris
,
R. N.
Tolchenov
,
Mon. Not. R. Astron. Soc.
368
,
1087
(
2006
).
62.
T. J.
Park
and
J. C.
Light
,
J. Chem. Phys.
85
,
5870
(
1986
).
63.
G. C.
Schatz
and
H.
Elgersma
,
Comput. Phys. Commun.
73
,
21
(
1980
).
64.
D. H.
Zhang
,
M. A.
Collins
,
S. Y.
Lee
,
Science
290
,
961
(
2000
).
65.
S. C.
Althorpe
,
D. J.
Kouri
,
D. K.
Hoffman
,
J. Chem. Phys.
106
,
7629
(
1997
).
66.
S. C.
Althorpe
,
Int. Rev. Phys. Chem.
23
,
219
(
2004
).
67.
M. R.
Portnoff
,
IEEE Trans. Image Process.
8
,
1265
(
1999
).
68.
E. G.
Cate
and
D. W.
Twigg
,
ACM Trans. Math. Softw.
3
,
104
(
1977
).
You do not currently have access to this content.