For branched polymers, the curvilinear motion of the branch point along the backbone is a significant relaxation source but details of this motion have not been well understood. This study conducts multi-chain sliplink simulations to examine effects of the spatial fluctuation and curvilinear hopping of the branch point on the viscoelastic relaxation. The simulation is based on the primitive chain network model that allows the spatial fluctuations of sliplink and branch point and the chain sliding along the backbone according to the subchain tension, chemical potential gradients, drag force against medium, and random force. The sliplinks are created and/or disrupted through the motion of chain ends. The curvilinear hopping of the branch point along the backbone is allowed to occur when all sliplinks on a branched arm are lost. The simulations considering the fluctuation and the hopping of the branch point described well the viscoelastic data for symmetric and asymmetric star polymers with a parameter set common to the linear polymer. On the other hand, the simulations without the branch point motion predicted unreasonably slow relaxation for asymmetric star polymers. For asymmetric star polymers, further tests with and without the branch point hopping revealed that the hopping is much less important compared to the branch point fluctuation when the lengths of the short and long backbone arms are not very different and the waiting time for the branch point hopping (time for removal of all sliplinks on the short arm) is larger than the backbone relaxation time. Although this waiting time changes with the hopping condition, the above results suggest a significance of the branch point fluctuation in the actual relaxation of branch polymers.

1.
M.
Doi
and
N. Y.
Kuzuu
,
J. Polym. Sci. Part C: Polym. Lett.
18
(
12
),
775
(
1980
).
2.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon, Oxford; Oxford University Press
,
New York
,
1986
).
3.
L. J.
Fetters
,
A. D.
Kiss
,
D. S.
Pearson
,
G. F.
Quack
, and
F. J.
Vitus
,
Macromolecules
26
(
4
),
647
(
1993
).
4.
D. S.
Pearson
and
E.
Helfand
,
Macromolecules
17
(
4
),
888
(
1984
).
5.
R. C.
Ball
and
T. C. B.
McLeish
,
Macromolecules
22
(
4
),
1911
(
1989
).
6.
S. T.
Milner
and
T. C. B.
McLeish
,
Macromolecules
31
(
21
),
7479
(
1998
).
7.
T. C. B.
McLeish
,
J.
Allgaier
,
D. K.
Bick
,
G.
Bishko
,
P.
Biswas
,
R.
Blackwell
,
B.
Blottiere
,
N.
Clarke
,
B.
Gibbs
,
D. J.
Groves
,
A.
Hakiki
,
R. K.
Heenan
,
J. M.
Johnson
,
R.
Kant
,
D. J.
Read
, and
R. N.
Young
,
Macromolecules
32
(
20
),
6734
(
1999
).
8.
R. G.
Larson
,
Macromolecules
34
(
13
),
4556
(
2001
).
9.
A. L.
Frischknecht
,
S. T.
Milner
,
A.
Pryke
,
R. N.
Young
,
R.
Hawkins
, and
T. C. B.
McLeish
,
Macromolecules
35
(
12
),
4801
(
2002
).
10.
S.
Shanbhag
and
R. G.
Larson
,
Macromolecules
37
(
21
),
8160
(
2004
).
11.
J. H.
Lee
,
L. J.
Fetters
, and
L. A.
Archer
,
Macromolecules
38
(
10
),
4484
(
2005
).
12.
S. J.
Park
,
S.
Shanbhag
, and
R. G.
Larson
,
Rheol. Acta
44
(
3
),
319
(
2005
).
13.
E.
van Ruymbeke
,
C.
Bailly
,
R.
Keunings
, and
D.
Vlassopoulos
,
Macromolecules
39
(
18
),
6248
(
2006
).
14.
Q.
Zhou
and
R. G.
Larson
,
Macromolecules
40
(
9
),
3443
(
2007
).
15.
M.
Zamponi
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
,
M.
Monkenbusch
,
L.
Willner
,
G.
Kali
, and
D.
Richter
,
Macromolecules
43
(
1
),
518
(
2010
).
16.
H.
Watanabe
,
T.
Sawada
, and
Y.
Matsumiya
,
Macromolecules
39
(
7
),
2553
(
2006
).
17.
X.
Qiao
,
T.
Sawada
,
Y.
Matsumiya
, and
H.
Watanabe
,
Macromolecules
39
(
21
),
7333
(
2006
).
18.
Y.
Masubuchi
,
J. I.
Takimoto
,
K.
Koyama
,
G.
Ianniruberto
,
G.
Marrucci
, and
F.
Greco
,
J. Chem. Phys.
115
(
9
),
4387
(
2001
).
19.
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Rheol. Acta
46
(
2
),
297
(
2006
).
20.
J. H.
Lee
,
J. M.
Goldberg
,
L. J.
Fetters
, and
L. A.
Archer
,
Macromolecules
39
(
19
),
6677
(
2006
).
21.
D.
Magatti
and
F.
Ferri
,
Appl. Opt.
40
(
24
),
4011
(
2001
).
22.
See http://reptate.com by
J.
Ramirez
and
A.
Likhtman
(
2009
) for information about the REPTATE software.
23.
Y.
Masubuchi
,
G.
Lanniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Non-Newtonian Fluid Mech.
149
(
1–3
),
87
(
2008
).
24.
Y.
Masubuchi
,
K.
Furuichi
,
K.
Horio
,
T.
Uneyama
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Chem. Phys.
131
(
11
),
114906
(
2009
).
25.
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Modell. Simul. Mater. Sci. Eng.
12
(
3
),
S91
S100
(
2004
).
You do not currently have access to this content.