The vapor-liquid coexistence curve of Morse fluid was calculated within the integral equations approach. The critical point coordinates were estimated. The parameters of Morse potential, fitted for elastic constants in solid phase, were used here to apply the results of present calculations to the determination of iron binodal. The properties of copper and sodium were considered in an analogous way. The calculations of pair correlation functions and isobars at liquid phase have shown that only for sodium these potential parameters allow one to obtain agreement with the measurements data. For iron another parameters are necessary to get this agreement in liquid phase. However, they give rise to very low critical temperature and pressure with respect to the estimates of other authors. Consequently, one can suppose that Morse potential is possibly inapplicable to the calculation of high temperature properties of non-alkali metals in disordered phases.

1.
G.
Malescio
,
J. Phys.: Condens. Matter
19
,
073101
(
2007
).
2.
H.
Okumura
and
F.
Yonezawa
,
J. Chem. Phys.
113
,
9162
(
2000
).
3.
Markus
Bier
and
S.
Dietrich
,
Mol. Phys.
108
,
211
(
2010
).
4.
F.
Hensel
,
Philos. Trans. R. Soc. London, Ser. A
356
,
97
(
1998
).
5.
P. I.
Bystrov
,
D. N.
Kagan
,
G. A.
Krechetova
, and
E. E.
Shpil'rain
,
Liquid Metal Coolants for Heat Pipers and Power Plants
(
Hemisphere
,
New York,
1990
).
6.
D. A.
Young
, Soft Sphere Model for Liquid Metals, Lawrence Livermore National Laboratory Report UCRL-52352 (
1977
).
7.
R.
Gathers
,
Rep. Prog. Phys.
49
,
341
(
1986
).
8.
T. R.
Mattson
and
M. P.
Desjarlais
, Equation of State and Electrical Conductivity of Stainless Steel, Sandia National Laboratory Report SAND 2004–5253 (
2004
).
9.
10.
L. A.
Girifalko
and
W. G.
Weizer
,
Phys. Rev.
114
,
687
(
1959
).
11.
R. C.
Lincoln
,
K. M.
Koliwad
, and
P. B.
Ghate
,
Phys. Rev.
157
,
463
(
1967
).
12.
A. R.
Ruffa
,
Phys. Rev. B.
24
,
6915
(
1981
).
13.
J. K.
Singh
,
J.
Adhikari
, and
S. K.
Kwak
,
Fluid Phase Equilib.
248
,
1
(
2006
).
14.
C.
Cheng
and
X.
Xu
,
Int. J. Thermophys.
28
,
9
(
2007
).
15.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo simulations In Statistical Physics
(
Cambridge University Press
,
Cambridge
, England,
2005
).
16.
R. J.
Sadus
,
Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation
(
Elsevier
,
Amsterdam
,
2002
).
18.
19.
G. A.
Martynov
,
G. N.
Sarkisov
, and
A. G.
Vompe
,
J. Chem. Phys.
110
,
3961
(
1999
).
20.
G.
Sarkisov
,
J. Chem. Phys.
114
,
9496
(
2001
).
21.
I.
Charpentier
and
N.
Jakse
,
J. Chem. Phys.
123
,
204910
(
2005
).
22.
E. B.
El Mendoub
,
J.-F.
Wax
, and
N.
Jakse
,
J. Chem. Phys
132
,
164503
(
2010
).
23.
O. E.
Kiselyov
and
G. A.
Martynov
,
J. Chem. Phys.
93
,
1942
(
1990
).
24.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
25.
S.
Labic
,
A.
Malijevsky
, and
P.
Vonka
,
Mol. Phys.
56
,
709
(
1987
).
26.
C. T.
Kelley
and
B.
Montgomery Pettitt
,
J. Comput. Phys.
197
,
491
(
2004
).
27.
J. M.
Brader
,
Int. J. Thermophys.
27
,
394
(
2006
).
28.
I.
Charpentier
and
N.
Jakse
,
J. Chem. Phys.
114
,
2284
(
2001
)
29.
C.
Antoine
,
Comptes Rendus des Séances de l’Académie des Sciences
107
,
681
(
1888
).
30.
Y.
Waseda
,
The Structure of Non-crystalline Materials
(
McGraw Hill
,
New York
,
1980
).
31.
K.
Matsuda
and
M.
Inui
,
Phys. Rev. Lett.
98
,
096401
(
2007
).
32.
E. M.
Apfelbaum
,
Phys. Chem. Liq.
48
,
534
(
2010
).
33.
F.
Juan-Coloa
,
D.
Osorio-Gonzalez
,
P.
Rosendo-Francisco
, and
J.
Lopez-Lemus
,
Mol. Sim.
33
,
1167
(
2007
).
34.
R. S.
Hixson
,
M. A.
Winkler
, and
M. L.
Hodgson
,
Phys. Rev. B
42
,
6485
(
1990
).
35.
M.
Beutl
,
G.
Pottlacher
, and
H.
Jager
,
Int. J. Thermophys.
15
,
1323
(
1994
).
36.
D. A.
Young
and
B. J.
Alder
,
Phys. Rev. A
3
,
364
(
1971
).
37.
V. E.
Fortov
,
A. N.
Dremin
, and
A. A.
Leontyev
,
High Temp.
13
,
1072
(
1975
) (in Russian).
38.
V. N.
Korobenko
and
A. D.
Rakhel
, e-print arXiv:1101.0487v2 (
2011
);
V. N.
Korobenko
and
A. D.
Rakhel
,
JETP.
139
,
746
(
2011
) (in Russian).
You do not currently have access to this content.