The formulation of density-functional expansion methods is extended to treat the second and higher-order terms involving the response density and spin densities with an arbitrary single-center auxiliary basis. The two-center atomic orbital products are represented by the auxiliary functions centered about those two atoms, and the mapping coefficients are determined from a local constrained variational procedure. This two-center variational procedure allows the mapping coefficients to be pretabulated and splined as a function of internuclear separation for efficient look up. The splines of mapping coefficients have a range no longer than that of the overlap integrals, and the auxiliary density appears as a single point-multipole expansion to all nonoverlapping atoms, thus allowing for the trivial implementation of a linear-scaling algorithm. The method is tested using Gaussian multipole expansions, and the effect of angular and radial completeness is explored. Several auxiliary basis sets are parametrized and compared to an auxiliary basis analogous to that used in the self-consistent-charge density-functional tight-binding model, and the method is demonstrated to greatly improve the representation of the density response with respect to a reference expansion model that does not use an auxiliary basis.

1.
M.
Elstner
,
T.
Frauenheim
,
E.
Kaxiras
,
G.
Seifert
, and
S.
Suhai
,
Phys. Status Solidi. B
217
,
357
(
2000
).
2.
Q.
Cui
,
M.
Elstner
,
E.
Kaxiras
,
T.
Frauenheim
, and
M.
Karplus
,
J. Phys. Chem. B
105
,
569
(
2001
).
3.
M.
Elstner
,
Theor. Chem. Acc.
116
,
316
(
2006
).
4.
Y.
Yang
,
H.
Yu
,
D. M.
York
,
Q.
Cui
, and
M.
Elstner
,
J. Phys. Chem. A
111
,
10861
(
2007
).
5.
N.
Otte
,
M.
Scholten
, and
W.
Thiel
,
J. Phys. Chem. A
111
,
5751
(
2007
).
6.
K. W.
Sattelmeyer
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
,
J. Phys. Chem. A
110
,
13551
(
2006
).
7.
O. V.
Shishkin
,
L.
Gorb
,
A. V.
Luzanov
,
M.
Elstner
,
S.
Suhai
, and
J.
Leszczynski
,
J. Mol. Struct.: THEOCHEM
625
,
295
(
2003
).
8.
H.
Zhou
,
E.
Tajkhorshid
,
T.
Frauenheim
,
S.
Suhai
, and
M.
Elstner
,
Chem. Phys.
277
,
91
(
2002
).
9.
Y.
Yang
,
H.
Yu
,
D.
York
,
M.
Elstner
, and
Q.
Cui
,
J. Chem. Theory Comput.
4
,
2067
(
2008
).
10.
T. J.
Giese
and
D. M.
York
,
J. Chem. Phys.
133
,
244107
(
2010
).
11.
M.
Gaus
,
Q.
Cui
, and
M.
Elstner
,
J. Chem. Theory Comput.
7
,
931
(
2011
).
12.
S.
Kaminski
,
M.
Gaus
,
P.
Phatak
,
D.
von Stetten
,
M.
Elstner
, and
M. A.
Mroginski
,
J. Chem. Theory Comput.
6
,
1240
(
2010
).
13.
D.
Riccardi
,
G.
Li
, and
Q.
Cui
,
J. Phys. Chem. B
108
,
6467
(
2004
).
14.
A.
Kumar
,
M.
Elstner
, and
S.
Suhai
,
Int. J. Quantum Chem.
95
,
44
(
2003
).
15.
Z.-L.
Cai
,
P.
Lopez
,
J. R.
Reimers
,
Q.
Cui
, and
M.
Elstner
,
J. Phys. Chem. A
111
,
5743
(
2007
).
16.
M.
Elstner
,
Q.
Cui
,
P.
Munih
,
E.
Kaxiras
,
T.
Frauenheim
, and
M.
Karplus
,
J. Comput. Chem.
24
,
565
(
2003
).
17.
G.
Dolgonos
,
B.
Aradi
,
N. H.
Moreira
, and
T.
Frauenheim
,
J. Chem. Theory Comput.
6
,
266
(
2010
).
18.
G.
Zheng
,
H. A.
Witek
,
P.
Bobadova-Parvanova
,
S.
Irle
,
D. G.
Musaev
,
R.
Prabhakar
, and
K.
Morokuma
,
J. Chem. Theory Comput.
3
,
1349
(
2007
).
19.
R. C.
Walker
,
M. F.
Crowley
, and
D. A.
Case
,
J. Comput. Chem.
29
,
1019
(
2008
).
20.
G.
Seabra
,
R. C.
Walker
,
M.
Elstner
,
D. A.
Case
, and
A. E.
Roitberg
,
J. Phys. Chem. A
111
,
5655
(
2007
).
21.
A. T.
Paxton
and
J. J.
Kohanoff
,
J. Chem. Phys.
134
,
044130
(
2011
).
22.
J.-P.
Piquemal
,
N.
Gresh
, and
C.
Giessner-Prettre
,
J. Phys. Chem. A
107
,
10353
(
2003
).
23.
J.
Piquemal
,
H.
Chevreau
, and
N.
Gresh
,
J. Chem. Theory Comput.
3
,
824
(
2007
).
24.
H.
Hu
,
Z.
Lu
,
M.
Elstner
,
J.
Hermans
, and
W.
Yang
,
J. Phys. Chem. A
111
,
5685
(
2007
).
25.
B. I.
Dunlap
,
N.
Rösch
, and
S. B.
Trickey
,
Mol. Phys.
108
,
3167
(
2010
).
26.
B. I.
Dunlap
,
J. Mol. Struct.: THEOCHEM
,
529
,
37
(
2000
).
27.
F.
Weigand
,
M.
Kattannek
, and
R.
Ahlrichs
,
J. Chem. Phys.
130
,
164106
(
2009
).
28.
F.
Aquilante
,
L.
Gagliardi
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Phys.
130
,
154107
(
2009
).
29.
Y.
Jung
,
A.
Sodt
,
P. W.
Gill
, and
M.
Head-Gordon
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6692
(
2005
).
30.
G. R.
Ahmadi
and
J.
Almlöf
,
Chem. Phys. Lett.
246
,
364
(
1995
).
31.
G. A.
Cisneros
,
J.
Piquemal
, and
T. A.
Darden
,
J. Chem. Phys.
125
,
184101
(
2006
).
32.
D. M.
Elking
,
G. A.
Cisneros
,
J.
Piquemal
,
T. A.
Darden
, and
L. G.
Pedersen
,
J. Chem. Theory Comput.
6
,
190
(
2010
).
33.
J.
Piquemal
,
G.
Cisneros
,
P.
Reinhardt
,
N.
Gresh
, and
T. A.
Darden
,
J. Chem. Phys.
124
,
104101
(
2006
).
34.
N.
Gresh
,
G. A.
Cisneros
,
T. A.
Darden
, and
J.-P.
Piquemal
,
J. Chem. Theory Comput.
3
,
1960
(
2007
).
35.
A.
Sodt
,
J. E.
Subotnik
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
194109
(
2006
).
36.
R. T.
Gallant
and
A.
St-Amant
,
Chem. Phys. Lett.
256
,
569
(
1996
).
37.
F.
Aquilante
,
R.
Lindh
, and
T. B.
Pedersen
,
J. Chem. Phys.
127
,
114107
(
2007
).
38.
A. M.
Burow
,
M.
Sierka
, and
F.
Mohamed
,
J. Chem. Phys.
131
,
214101
(
2009
).
39.
M. A.
Watson
,
P.
Sałek
,
P.
Macak
, and
T.
Helgaker
,
J. Chem. Phys.
121
,
2915
(
2004
).
40.
T. J.
Giese
and
D. M.
York
,
J. Comput. Chem.
29
,
1895
(
2008
).
41.
C. A.
White
,
B. G.
Johnson
,
P. M.W.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
230
,
8
(
1994
).
42.
W. M.C.
Foulkes
and
R.
Haydock
,
Phys. Rev. B
39
,
12520
(
1989
).
43.
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
44.
G.
Seifert
,
J. Phys. Chem. A
111
,
5609
(
2007
).
45.
W.
Kohn
and
L.
Sham
,
Phys. Rev. A
140
,
A1133
(
1965
).
46.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
23
,
69
(
1951
).
47.
S. F.
Boys
,
Proc. R. Soc. London A Mat.
200
,
542
(
1950
)
48.
C. A.
White
and
M.
Head-Gordon
,
J. Chem. Phys.
104
,
2620
(
1996
).
49.
Y.
Shao
,
C. A.
White
, and
M.
Head-Gordon
,
J. Chem. Phys.
114
,
6572
(
2001
).
50.
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
6
,
5119
(
2004
).
51.
R. S.
Mulliken
,
J. Am. Chem. Soc.
72
,
4493
(
1950
).
52.
J. A.
Kalinowski
,
B.
Lesyng
,
J. D.
Thompson
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
2545
(
2004
).
53.
C. H.
Choi
,
J.
Ivanic
,
M. S.
Gordon
, and
K.
Ruedenberg
,
J. Chem. Phys.
111
,
8825
(
1999
).
54.
B. I.
Dunlap
,
J. Chem. Phys.
78
,
3140
(
1983
).
55.
T. J.
Giese
and
D. M.
York
,
J. Chem. Phys.
128
,
064104
(
2008
).
56.
E. W.
Hobson
,
Proc. London Math. Soc.
24
,
55
(
1892
).
57.
A. W.
Niukkanen
,
J. Math. Phys.
24
,
1989
(
1983
).
58.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
59.
The molecules in the test set are: BeH, C2H2, C2H4, C2H6, CH2, CH3, CH4, CH4O, CH4S, CH3Cl, CN, CS, HC, HCN, HCO, HF, HCl, LiH, NH, HO, H2O, H2O2, OCl, NO, OS, O2, CO, SiO, CO2, SO2, F2, Cl2, FCl, Li2, LiF, Na2, NaCl, N2, NH2, NH3, N2H4, HOCl, H2CO, P2, PH2, PH3, S2, H2S, SiH2, SiH3, SiH4, and Si2H6.
60.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
61.
R. S.
Mulliken
,
J. Chem. Phys.
2
,
782
(
1934
).
62.
R. G.
Parr
and
R. G.
Pearson
,
J. Am. Chem. Soc.
105
,
7512
(
1983
).
63.
Y.
Tu
,
S. P.
Jacobsson
, and
A.
Laaksonen
,
Phys. Rev. B
74
,
205104
(
2006
).
You do not currently have access to this content.