Static disorder has recently been implicated in the non-exponential kinetics of the unfolding of single molecules of poly-ubiquitin under a constant force [Kuo, Garcia-Manyes, Li, Barel, Lu, Berne, Urbakh, Klafter, and Fernández, Proc. Natl. Acad. Sci. U.S.A.107, 11336 (2010)

]. In the present paper, it is suggested that dynamic disorder may provide a plausible, alternative description of the experimental observations. This suggestion is made on the basis of a model in which the barrier to chain unfolding is assumed to be modulated by a control parameter r that evolves in a parabolic potential under the action of fractional Gaussian noise according to a generalized Langevin equation. The treatment of dynamic disorder within this model is pursued using Zwanzig's indirect approach to noise averaging [Acc. Chem. Res.23, 148 (1990)]. In conjunction with a self-consistent closure scheme developed by Wilemski and Fixman [J. Chem. Phys.58, 4009 (1973); ibid.60, 866 (1974)], this approach eventually leads to an expression for the chain unfolding probability that can be made to fit the corresponding experimental data very closely.

1.
R.
Zwanzig
,
Acc. Chem. Res.
23
,
148
(
1990
).
2.
A. M.
van Oijen
,
P. C.
Blainey
,
D. J.
Crampton
,
C. C.
Richardson
,
T.
Ellenberger
, and
X. S.
Xie
,
Science
301
,
1235
(
2003
);
[PubMed]
H. P.
Lu
,
L.
Xun
, and
X. S.
Xie
,
Science
282
,
1877
(
1998
);
[PubMed]
O.
Flomenbom
,
K.
Velonia
,
D.
Loos
,
S.
Masuo
,
M.
Cotlet
,
Y.
Engelborghs
,
J.
Hofkens
,
A. E.
Rowan
,
R. J. M.
Nolte
,
M.
van der Auweraer
,
F. C.
de Schryver
, and
J.
Klafter
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
2368
(
2005
);
K.
Velonia
,
O.
Flomenbom
,
D.
Loos
,
S.
Masuo
,
M.
Cotlet
,
Y.
Engelborghs
,
J.
Hofkens
,
A. E.
Rowan
,
J.
Klafter
,
R. J. M.
Nolte
, and
F. C.
de Schryver
,
Angew. Chem., Int. Ed.
44
,
560
(
2005
);
B. P.
English
,
W.
Min
,
A. M.
van Oijen
,
K. T.
Lee
,
G.
Luo
,
H.
Sun
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Nat. Chem. Biol.
2
,
87
(
2006
).
[PubMed]
3.
T.-L.
Kuo
,
S.
Garcia-Manyes
,
J.
Li
,
I.
Barel
,
H.
Lu
,
B. J.
Berne
,
M.
Urbakh
,
J.
Klafter
, and
J. M.
Fernández
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
11336
(
2010
).
4.
P.
Debnath
,
W.
Min
,
X. S.
Xie
, and
B. J.
Cherayil
,
J. Chem. Phys.
123
,
204903
(
2005
);
[PubMed]
J.
Tang
and
R.
Marcus
,
Phys. Rev. E
73
,
022102
(
2006
);
Y.
Cote
,
P.
Senet
,
P.
Delarue
,
G. G.
Maisuradze
, and
H. A.
Scheraga
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
19844
(
2010
);
[PubMed]
V.
Calandrini
,
D.
Abergel
and
G. R.
Kneller
,
J. Chem. Phys.
133
,
145101
(
2010
).
[PubMed]
5.
H.
Yang
,
G.
Luo
,
P.
Karnchanaphanurach
,
T.-M.
Louie
,
I.
Rech
,
S.
Cova
,
L.
Xun
, and
X. S.
Xie
,
Science
302
,
262
(
2003
);
[PubMed]
W.
Min
,
B. P.
English
,
G.
Luo
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Acc. Chem. Res.
38
,
923
(
2005
);
[PubMed]
W.
Min
and
X. S.
Xie
,
Phys. Rev. E
73
,
010902
R
(
2006
).
6.
G.
Wilemski
and
M.
Fixman
,
J. Chem. Phys.
58
,
4009
(
1973
);
7.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito
,
2000
);
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
New York
,
2001
).
8.
B.
Mandelbrot
and
J.
van Ness
,
SIAM Rev.
10
,
422
(
1968
);
S. C.
Lim
and
S. V.
Muniandy
,
Phys. Rev. E
66
,
021114
(
2002
);
K. S.
Fa
and
E. K.
Lenzi
,
Phys. Rev. E
71
,
012101
(
2005
).
9.
S. C.
Kou
and
X. S.
Xie
,
Phys. Rev. Lett.
93
,
180603
(
2004
);
[PubMed]
W.
Min
,
G.
Luo
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Phys. Rev. Lett.
94
,
198302
(
2005
);
[PubMed]
S.
Chaudhury
and
B. J.
Cherayil
,
J. Chem. Phys.
127
,
145103
(
2007
);
[PubMed]
S.
Chaudhury
,
S. C.
Kou
, and
B. J.
Cherayil
,
J. Phys. Chem. B
111
,
2377
(
2007
).
[PubMed]
10.
S.
Chaudhury
and
B. J.
Cherayil
,
J. Chem. Phys.
125
,
024904
(
2006
).
11.
S.
Okuyama
and
D. W.
Oxtoby
,
J. Chem. Phys.
84
,
5824
(
1986
);
R. F.
Fox
,
Phys. Rev. A
33
,
467
(
1986
);
R. F.
Fox
,
J. Math. Phys.
18
,
2331
(
1977
);
P.
Hänggi
, in
Stochastic Processes Applied to Physics
, edited by
L.
Pasquera
and
M.
Rodriguez
(
World Scientific
,
Philadelphia
,
1985
), pp.
69
95
;
P.
Hänggi
, in
Noise in Nonlinear Dynamical Systems
, edited by
F.
Moss
and
P. V. E.
McClintock
(
Cambridge University Press
,
New York
,
1989
), Vol. 1, Chap. 9, pp.
307
328
12.
I.
Podlubny
,
Fractional Differential Equations
(
Academic
,
San Diego
,
1999
);
A. M.
Mathai
and
H. J.
Haubold
,
Special Functions for Applied Scientists
(
Springer
,
New York
,
2008
).
13.
D.
Chatterjee
and
B. J.
Cherayil
,
J. Chem. Phys.
132
,
025103
(
2010
).
14.
A. D.
Viñales
and
M. A.
Despósito
,
Phys. Rev. E
73
,
016111
(
2006
).
15.
The required derivative is obtained from the following general identities (Ref. 12): Eα, β(z) = zEα, α + β(z) + 1/Γ(β) and Eα, β(z) = βEα, β + 1(z) + αz(dEα, β + 1(z)/dz).
16.
J.
Li
,
J. M.
Fernandez
, and
B. J.
Berne
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
19284
(
2010
).
17.
The data digitization program WinDig (downloaded from the web) was used to obtain numerical estimates of the coordinates of the data points.
You do not currently have access to this content.