We remove the nonuniqueness of the embedding potential that exists in most previous quantum mechanical embedding schemes by letting the environment and embedded region share a common embedding (interaction) potential. To efficiently solve for the embedding potential, an optimized effective potential method is derived. This embedding potential, which eschews use of approximate kinetic energy density functionals, is then used to describe the environment while a correlated wavefunction (CW) treatment of the embedded region is employed. We first demonstrate the accuracy of this new embedded CW (ECW) method by calculating the van der Waals binding energy curve between a hydrogen molecule and a hydrogen chain. We then examine the prototypical adsorption of CO on a metal surface, here the Cu(111) surface. In addition to obtaining proper site ordering (top site most stable) and binding energies within this theory, the ECW exhibits dramatic changes in the p-character of the CO 4σ and 5σ orbitals upon adsorption that agree very well with x-ray emission spectra, providing further validation of the theory. Finally, we generalize our embedding theory to spin-polarized quantum systems and discuss the connection between our theory and partition density functional theory.

1.
T. S.
Chwee
and
E. A.
Carter
,
J. Chem. Phys.
132
,
074104
(
2010
).
2.
M.
Schütz
and
H. J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
3.
J. E.
Subotnik
,
A.
Sodt
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
074116
(
2006
).
4.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
5.
C.
Pisani
,
L.
Maschio
,
S.
Casassa
,
M.
Halo
,
M.
Schütz
, and
D.
Usvyat
,
J. Comput. Chem.
29
,
2113
(
2008
).
7.
B. G.
Dick
and
A. W.
Overhauser
,
Phys. Rev.
112
,
603
(
1958
);
P. V.
Sushko
,
A. L.
Shluger
, and
C. R. A.
Catlow
,
Surf. Sci.
450
,
153
(
2000
).
8.
J. R.
Shoemaker
,
L. W.
Burggraf
, and
M. S.
Gordon
,
J. Phys. Chem. A
103
,
3245
(
1999
).
9.
A.
Redondo
,
W. A.
Goddard
 III
,
C. A.
Swarts
, and
T. C.
McGill
,
J. Vac. Sci. Technol.
19
,
498
(
1981
).
10.
11.
J. E.
Inglesfield
,
J. Phys. C: Solid State Phys.
14
,
3795
(
1981
).
12.
J. L.
Whitten
and
H.
Yang
,
Int. J. Quantum Chem.
56
,
41
(
1995
).
13.
N.
Govind
,
Y. A.
Wang
,
A. J. R.
da Silva
, and
E. A.
Carter
,
Chem. Phys. Lett.
295
,
129
134
(
1998
);
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
110
,
7677
(
1999
);
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
Phys. Rev. Lett.
86
,
5954
(
2001
);
[PubMed]
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
Phys. Rev. Lett.
88
,
209702
(
2002
);
[PubMed]
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
116
,
42
(
2002
);
S.
Sharifzadeh
,
P.
Huang
, and
E. A.
Carter
,
Chem. Phys. Lett.
470
,
347
(
2009
).
14.
P.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
125
,
084102
(
2006
).
15.
16.
P.
Huang
and
E. A.
Carter
,
Annu. Rev. Phys. Chem.
59
,
261
(
2008
).
17.
T. A.
Wesołowski
,
Y.
Ellinger
, and
J.
Weber
,
J. Chem. Phys.
108
,
6078
(
1998
).
18.
J. R.
Trail
and
D. M.
Bird
,
Phys. Rev. B
62
,
16402
(
2000
).
19.
O.
Roncero
,
M. P.
de Lara-Castells
,
P.
Villarreal
,
F.
Flores
,
J.
Ortega
,
M.
Paniagua
, and
A.
Aguado
,
J. Chem. Phys.
129
,
184104
(
2008
).
20.
S.
Fux
,
C. R.
Jacob
,
J.
Neugebauer
,
L.
Visscher
, and
M.
Reiher
,
J. Chem. Phys.
132
,
164101
(
2010
);
[PubMed]
J. D.
Goodpaster
,
N.
Ananth
,
F. R.
Manby
, and
Thomas F.
Miller
, III
,
J. Chem. Phys.
133
,
084103
(
2010
).
[PubMed]
21.
O.
Roncero
,
A.
Zanchet
,
P.
Villarreal
, and
A.
Aguado
,
J. Chem. Phys.
131
,
234110
(
2009
).
22.
M. H.
Cohen
and
A.
Wassermann
,
J. Stat. Phys.
125
,
1125
(
2006
).
23.
M. H.
Cohen
and
A.
Wasserman
,
Israel J. Chem.
43
,
219
(
2003
);
M. H.
Cohen
and
A.
Wasserman
,
J. Phys. Chem. A
111
,
2229
(
2007
).
[PubMed]
24.
P.
Elliott
,
M. H.
Cohen
,
A.
Wasserman
, and
K.
Burke
,
J. Chem. Theory Comput.
5
,
827
(
2009
);
[PubMed]
P.
Elliott
,
K.
Burke
,
M. H.
Cohen
, and
A.
Wasserman
,
Phys. Rev. A.
82
,
024501
(
2010
).
25.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
26.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
27.
S.
Sharifzadeh
,
P.
Huang
, and
E. A.
Carter
,
J. Phys. Chem. C
112
,
4649
(
2008
).
28.
X.
Gonze
,
B.
Amadon
,
P.
Anglade
,
J.-M.
Beuken
,
F.
Bottin
,
P.
Boulanger
,
F.
Bruneval
,
D.
Caliste
,
R.
Caracas
,
M.
Cote
,
T.
Deutsch
,
L.
Genovese
,
P.
Ghosez
,
M.
Giantomassi
,
S.
Goedecker
,
D.
Hamann
,
P.
Hermet
,
F.
Jollet
,
G.
Jomard
,
S.
Leroux
,
M.
Mancini
,
S.
Mazevet
,
M.
Oliveira
,
G.
Onida
,
Y.
Pouillon
,
T.
Rangel
,
G.-M.
Rignanese
,
D.
Sangalli
,
R.
Shaltaf
,
M.
Torrent
,
M.
Verstraete
,
G.
Z´erah
, and
J.
Zwanziger
,
Comput. Phys. Commun.
180
,
2582
(
2009
).
29.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
30.
R. H.
Byrd
,
P.
Lu
,
J.
Nocedal
, and
C.
Zhu
,
SIAM, J. Sci. Comput.
16
,
1190
(
1995
).
31.
T.
Heaton-Burgess
,
F. A.
Bulat
, and
W.
Yang
,
Phys. Rev. Lett.
98
,
256401
(
2007
).
32.
J.
Trail
and
R.
Needs
,
J. Chem. Phys.
122
,
174109
(
2005
).
33.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
34.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. J.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
35.
G.
Karlström
,
R.
Lindh
,
P.-Å.
Malmqvist
,
B. O.
Roos
,
U.
Ryde
,
V.
Veryazov
,
P.-O.
Widmark
,
M.
Cossi
,
B.
Schimmelpfennig
,
P.
Neogrady
, and
L.
Seijo
,
Comput. Mater. Sci.
28
,
222
(
2003
).
36.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Dover
,
New York
,
1996
).
37.
P. E. M.
Siegbahn
,
Lecture Notes in Quantum Chemistry
, edited by
B. O.
Roos
, Vol.
58
(
Springer-Verlag
,
Berlin
,
1992
).
38.
B. O.
Roos
,
P. R.
Taylorand
, and
P. E. M.
Siegbahn
,
J. Chem. Phys.
48
,
157
(
1980
).
39.
M.
Fuchs
and
M.
Scheffler
,
Comput. Phys. Commun.
119
,
67
(
1999
).
40.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B.
13
,
5188
(
1976
).
41.
W. J.
Stevens
,
H.
Basch
, and
M.
Krauss
,
J. Chem. Phys.
81
,
6026
(
1984
).
42.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
270
(
1985
).
43.
P. S.
Bagus
,
J. C. W.
Bauschlicher
,
C. J.
Nelin
,
B. C.
Laskowski
, and
M.
Seel
,
J. Chem. Phys.
81
,
3594
(
1984
).
44.
M.
Svensson
,
S.
Humbel
,
R. D. J.
Froese
,
T.
Matsubara
,
S.
Sieber
, and
K.
Morokuma
,
J. Phys. Chem.
100
,
19357
(
1996
).
45.
M.
Gajdos
,
A.
Eichler
, and
J.
Hafner
,
J. Phys. Condens. Matter
,
16
,
1141
(
2004
);
P. J.
Feibelman
,
B.
Hammer
,
J. K.
Nørskov
,
F.
Wagner
,
M.
Scheffler
,
R.
Stumpf
,
R.
Watwe
, and
J.
Dumesic
,
J. Phys. Chem. B
105
(
18
),
4018
(
2001
).
46.
S.
Vollmer
,
G.
Witte
, and
C.
Wöll
,
Catal. Lett.
77
,
97
(
2001
).
47.
P.
Hollins
and
J.
Pritchard
,
Surf. Sci.
89
,
486
(
1979
).
48.
W.
Kirstein
,
B.
Krueger
, and
F.
Thieme
,
Surf. Sci.
176
,
505
(
1986
).
49.
J.
Kessler
and
F.
Thieme
,
Surf. Sci.
67
,
405
(
1997
).
50.
L.
Bartels
,
G.
Meyer
, and
K.-H.
Rieder
,
Surf. Sci.
432
,
L621
(
1999
).
51.
A.
Föhlisch
,
M.
Nyberg
,
P.
Bennich
,
L.
Triguero
,
J.
Hasselström
,
O.
Karis
,
L. G. M.
Pettersson
, and
A.
Nilsson
,
J. Chem. Phys.
112
,
1946
(
2000
).
52.
G. J.
Blyholder
,
J. Phys. Chem.
68
,
2772
(
1964
).
53.
U.
Von Barth
and
L.
Hedin
,
J. Phys. C: Solid State Phys
5
,
1629
(
1972
).
54.
T.
Heaton-Burgess
,
P.
Ayers
, and
W. T.
Yang
,
Phys. Rev. Lett.
98
,
036403
(
2007
).
55.
R. F. W.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
New York
,
1994
).
56.
T. A.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
You do not currently have access to this content.