An accurate prediction of phase behavior at conditions far and close to criticality cannot be accomplished by mean-field based theories that do not incorporate long-range density fluctuations. A treatment based on renormalization-group (RG) theory as developed by White and co-workers has proven to be very successful in improving the predictions of the critical region with different equations of state. The basis of the method is an iterative procedure to account for contributions to the free energy of density fluctuations of increasing wavelengths. The RG method has been combined with a number of versions of the statistical associating fluid theory (SAFT), by implementing White's earliest ideas with the improvements of Prausnitz and co-workers. Typically, this treatment involves two adjustable parameters: a cutoff wavelength L for density fluctuations and an average gradient of the wavelet function Φ. In this work, the SAFT-VR (variable range) equation of state is extended with a similar crossover treatment which, however, follows closely the most recent improvements introduced by White. The interpretation of White's latter developments allows us to establish a straightforward method which enables Φ to be evaluated; only the cutoff wavelength L then needs to be adjusted. The approach used here begins with an initial free energy incorporating only contributions from short-wavelength fluctuations, which are treated locally. The contribution from long-wavelength fluctuations is incorporated through an iterative procedure based on attractive interactions which incorporate the structure of the fluid following the ideas of perturbation theories and using a mapping that allows integration of the radial distribution function. Good agreement close and far from the critical region is obtained using a unique fitted parameter L that can be easily related to the range of the potential. In this way the thermodynamic properties of a square-well (SW) fluid are given by the same number of independent intermolecular model parameters as in the classical equation. Far from the critical region the approach provides the correct limiting behavior reducing to the classical equation (SAFT-VR). In the critical region the β critical exponent is calculated and is found to take values close to the universal value. In SAFT-VR the free energy of an associating chain fluid is obtained following the thermodynamic perturbation theory of Wertheim from the knowledge of the free energy and radial distribution function of a reference monomer fluid. By determining L for SW fluids of varying well width a unique equation of state is obtained for chain and associating systems without further adjustment of critical parameters. We use computer simulation data of the phase behavior of chain and associating SW fluids to test the accuracy of the new equation.

1.
NIST Chemistry WebBook
,
NIST Standard Reference Database Number 69
;
NIST
:
Gaithersburg, MD
,
2008
. See http://webbook.nist.gov/.
2.
D.-Y.
Peng
and
D. B.
Robinson
,
Ind. Eng. Chem. Fundam.
15
,
59
(
1976
).
4.
J. M. H. L.
Sengers
,
Physica A
82
,
319
(
1975
).
5.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
Fluid Phase Equilib.
52
,
31
(
1989
).
6.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
Ind. Eng. Chem. Res.
29
,
1709
(
1990
).
7.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
19
(
1984
).
8.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
35
(
1984
).
9.
M. S.
Wertheim
,
J. Stat. Phys.
42
,
459
(
1986
).
10.
M. S.
Wertheim
,
J. Stat. Phys.
42
,
477
(
1986
).
11.
M. S.
Wertheim
,
J. Chem. Phys.
85
,
2929
(
1986
).
12.
M. S.
Wertheim
,
J. Chem. Phys.
87
,
7323
(
1987
).
13.
E. A.
Müller
and
K. E.
Gubbins
, “
Associating fluids and fluid mixtures
,” in
Equations of State for Fluids and Fluid Mixtures
, edited by
J. V.
Sengers
,
R. F.
Kayser
,
C. J.
Peters
, and
H. J.
White
(
Elsevier
,
Amsterdam
,
2000
), Chap. XII.
14.
E. A.
Muller
and
K. E.
Gubbins
,
Ind. Eng. Chem. Res.
40
,
2193
(
2001
).
15.
I. G.
Economou
,
Ind. Eng. Chem. Res.
41
,
953
(
2002
).
16.
S. P.
Tan
,
H.
Adidharma
, and
M.
Radosz
,
Ind. Eng. Chem. Res.
47
,
8063
(
2008
).
17.
C.
McCabe
and
A.
Galindo
, “
Saft associating fluids and fluid mixtures
,” in
Applied Thermodynamics of Fluids
, edited by
A. R.H.
Goodwin
and
J. V.
Sengers
(
Royal Society of Chemistry
,
London
,
2010
), Chap. VIII.
18.
A.
Gil-Villegas
,
A.
Galindo
,
P. J.
Whitehead
,
S. J.
Mills
,
G.
Jackson
, and
A. N.
Burgess
,
J. Chem. Phys.
106
,
4168
(
1997
).
19.
J. V.
Sengers
and
J. M. H. L.
Sengers
,
Annu. Rev. Phys. Chem.
37
,
189
(
1986
).
20.
C.
Domb
,
The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena
(
Taylor and Francis
,
London
,
1996
).
21.
J. M. H. L.
Sengers
,
Fluid Phase Equilib.
158-160
,
3
(
1999
).
22.
J. J.
Binney
,
N. J.
Dowrick
,
A. J.
Fisher
, and
M. E. J.
Newman
,
The Theory of Critical Phenomena: An Introduction to the Renormalization Group
(
Clarendon
,
Oxford
,
1992
).
23.
M. E.
Fisher
,
Rev. Mod. Phys.
70
,
653
(
1998
).
24.
M. A.
Anisimov
and
J. V.
Sengers
, “
Critical region
,” in
Equations of State for Fluids and Fluid Mixtures
, edited by
J. V.
Sengers
,
R. F.
Kayser
,
C. J.
Peters
, and
H. J.
White
(
Elsevier
,
Amsterdam
,
2000
), Chap. XI.
25.
Z. Y.
Chen
,
P. C.
Albright
, and
J. V.
Sengers
,
Phys. Rev. A
41
,
3161
(
1990
).
26.
Z. Y.
Chen
,
A.
Abbaci
,
S.
Tang
, and
J. V.
Sengers
,
Phys. Rev. A
42
,
4470
(
1990
).
27.
J. F.
Nicoll
and
J. K.
Bhattacharjee
,
Phys. Rev. B
23
,
389
(
1981
).
28.
J. F.
Nicoll
and
P. C.
Albright
,
Phys. Rev. B
31
,
4576
(
1985
).
29.
A. K.
Wyczalkowska
,
M. A.
Anisimov
, and
J. V.
Sengers
,
Fluid Phase Equilib.
158
,
523
(
1999
).
30.
A. K.
Wyczalkowska
,
J. V.
Sengers
, and
M. A.
Anisimov
,
Physica A
334
,
482
(
2004
).
31.
A. L.
Sengers
,
R.
Hocken
, and
J. V.
Sengers
,
Phys. Today
30
,
42
(
1977
).
32.
S. B.
Kiselev
,
Fluid Phase Equilib.
147
,
7
(
1998
).
33.
S. B.
Kiselev
and
J. F.
Ely
,
Ind. Eng. Chem. Res.
38
,
4993
(
1999
).
34.
S. H.
Huang
and
M.
Radosz
,
Ind. Eng. Chem. Res.
30
,
1994
(
1991
).
35.
H.
Adidharma
and
M.
Radosz
,
Ind. Eng. Chem. Res.
37
,
4453
(
1998
).
36.
C.
McCabe
and
S. B.
Kiselev
,
Fluid Phase Equilib.
219
,
3
(
2004
).
37.
C.
McCabe
and
S. B.
Kiselev
,
Ind. Eng. Chem. Res.
43
,
2839
(
2004
).
38.
S. B.
Kiselev
and
J. F.
Ely
,
Chem. Eng. Sci.
61
,
5107
(
2006
).
39.
S. B.
Kiselev
and
J. F.
Ely
,
J. Phys. Chem. C
111
,
15969
(
2007
).
40.
A.
Parola
and
L.
Reatto
,
Phys. Rev. Lett.
53
,
2417
(
1984
).
41.
A.
Parola
and
L.
Reatto
,
Phys. Rev. A
31
,
3309
(
1985
).
42.
A.
Parola
and
L.
Reatto
,
Phys. Rev. A
44
,
6600
(
1991
).
43.
K. G.
Wilson
,
Phys. Rev. B
4
,
3184
(
1971
).
44.
L. W.
Salvino
and
J. A.
White
,
J. Chem. Phys.
96
,
4559
(
1992
).
45.
J. A.
White
,
Fluid Phase Equilib.
75
,
53
(
1992
).
46.
J. A.
White
and
S.
Zhang
,
J. Chem. Phys.
99
,
2012
(
1993
).
47.
J. A.
White
and
S.
Zhang
,
J. Chem. Phys.
103
,
1922
(
1995
).
48.
L.
Lue
and
J. M.
Prausnitz
,
J. Chem. Phys.
108
,
5529
(
1998
).
49.
L.
Lue
and
J. M.
Prausnitz
,
AIChE J.
44
,
1455
(
1998
).
50.
Y.
Tang
,
J. Chem. Phys.
109
,
5935
(
1998
).
51.
J.
Jiang
and
J. M.
Prausnitz
,
J. Chem. Phys.
111
,
5964
(
1999
).
52.
J.
Jiang
and
J. M.
Prausnitz
,
AIChE J.
46
,
2525
(
2000
).
53.
F.
Llovell
,
J. C.
Pàmies
, and
L. F.
Vega
,
J. Chem. Phys.
121
,
10715
(
2004
).
54.
F.
Llovell
and
L. F.
Vega
,
J. Phys. Chem. B
110
,
1350
(
2006
).
55.
F.
Llovell
and
L. F.
Vega
,
J. Supercrit. Fluids
41
,
204
(
2007
).
56.
F.
Llovell
,
L. J.
Florusse
,
C. J.
Peters
, and
L. F.
Vega
,
J. Phys. Chem. B
111
,
10180
(
2007
).
57.
A. M. A.
Dias
,
F.
Llovell
,
J. A.P.
Coutinho
,
I. M.
Marrucho
, and
L. F.
Vega
,
Fluid Phase Equilib.
286
,
134
(
2009
).
58.
A.
Belkadi
,
M. K.
Hadj-Kali
,
F.
Llovell
,
V.
Gerbaud
, and
L. F.
Vega
,
Fluid Phase Equilib.
289
,
191
(
2010
).
59.
A.
Bymaster
,
C.
Emborsky
,
A.
Dominik
, and
W. G.
Chapman
,
Ind. Eng. Chem. Res.
47
,
6264
(
2008
).
60.
D.
Fu
,
X.-S.
Li
,
S.
Yan
, and
T.
Liao
,
Ind. Eng. Chem. Res.
45
,
8199
(
2006
).
61.
X.
Tang
and
J.
Gross
,
Ind. Eng. Chem. Res.
49
,
9436
(
2010
).
62.
J. A.
White
and
S.
Zhang
,
Int. J. Thermophys.
19
,
1019
(
1998
).
63.
J. A.
White
,
J. Chem. Phys.
111
,
9352
(
1999
).
64.
J. A.
White
,
J. Chem. Phys.
112
,
3236
(
2000
).
65.
J. A.
White
,
J. Chem. Phys.
113
,
1580
(
2000
).
66.
C.
McCabe
,
A.
Galindo
,
A.
Gil-Villegas
, and
G.
Jackson
,
J. Phys. Chem. B
102
,
8060
(
1998
).
67.
P.
Morgado
,
C.
McCabe
, and
E. J. M.
Filipe
,
Fluid Phase Equilib.
228–229
,
389
(
2005
).
68.
F. J.
Blas
and
A.
Galindo
,
Fluid Phase Equilib.
194–197
,
501
(
2002
).
69.
A.
Galindo
and
F. J.
Blas
,
J. Phys. Chem. B
106
,
4503
(
2002
).
70.
A.
Valtz
,
A.
Chapoy
,
C.
Coquelet
,
P.
Paricaud
, and
D.
Richon
,
Fluid Phase Equilib.
226
,
333
(
2004
).
71.
M. C.
dos Ramos
,
F. J.
Blas
, and
A.
Galindo
,
Fluid Phase Equilib.
261
,
359
(
2007
).
72.
M. C.
dos Ramos
,
F. J.
Blas
, and
A.
Galindo
,
J. Phys. Chem. C
111
,
15924
(
2007
).
73.
N.
Mac Dowell
,
F.
Llovell
,
C. S.
Adjiman
,
G.
Jackson
, and
A.
Galindo
,
Ind. Eng. Chem. Res.
49
,
1883
(
2010
).
74.
G. N. I.
Clark
,
A. J.
Haslam
,
A.
Galindo
, and
G.
Jackson
,
Mol. Phys.
104
,
3561
(
2006
).
75.
M. C.
dos Ramos
,
H.
Docherty
,
F. J.
Blas
, and
A.
Galindo
,
Fluid Phase Equilib.
276
,
116
(
2009
).
76.
B.
Giner
,
I.
Gascon
,
H.
Artigas
,
C.
Lafuente
, and
A.
Galindo
,
J. Phys. Chem. B
111
,
9588
(
2007
).
77.
B.
Giner
,
F. M.
Royo
,
C.
Lafuente
, and
A.
Galindo
,
Fluid Phase Equilib.
255
,
200
(
2007
).
78.
H.
Zhao
,
Y.
Ding
, and
C.
McCabe
,
J. Chem. Phys.
127
,
084514
(
2007
).
79.
M. C.
dos Ramos
and
C.
McCabe
,
Fluid Phase Equilib.
290
,
137
(
2010
).
80.
A.
Galindo
,
A.
Gil-Villegas
,
G.
Jackson
, and
A. N.
Burgess
,
J. Phys. Chem. B
103
,
10272
(
1999
).
81.
P.
Paricaud
,
A.
Galindo
, and
G.
Jackson
,
Fluid Phase Equilib.
194–197
,
87
(
2002
).
82.
B. H.
Patel
,
P.
Paricaud
,
A.
Galindo
, and
G. C.
Maitland
,
Ind. Eng. Chem. Res.
42
,
3809
(
2003
).
83.
H.
Zhao
,
M. C.
dos Ramos
, and
C.
McCabe
,
J. Chem. Phys.
126
,
244503
(
2007
).
84.
P.
Paricaud
,
A.
Galindo
, and
G.
Jackson
,
Ind. Eng. Chem. Res.
43
,
6871
(
2004
).
85.
G. N. I.
Clark
,
A.
Galindo
,
G.
Jackson
,
S.
Rogers
, and
A. N.
Burgess
,
Macromolecules
41
,
6582
(
2008
).
86.
L.
Sun
,
H.
Zhao
,
S. B.
Kiselev
, and
C.
McCabe
,
J. Phys. Chem. B
109
,
9047
(
2005
).
87.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
88.
Although this is apparently different to what is used in recent papers of White (Refs. 63–65), where λn = 2n − 1λ1, both expressions are equivalent by taking λ1 = 2L. In this work λn is written in terms of λ0 = L (instead of λ1).
89.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic
,
London
2006
).
90.
The factor of
$\protect \sqrt{2}$
2
appears for consistency with White's definitions, since it is the root mean square (RMS) what is used as “amplitude” of the wave packet.
91.
G.
Battle
, “
Wavelet refinement of the wilson recursion formula
,” in
Recent advances in wavelet analysis
, edited by
L. L.
Schumaker
and
G.
Webb
(
Academic, Inc.
,
London
,
1994
), p.
87
92.
The exception is the initial work of Lue and Prausnitz (Refs. 48 and 49), who use as a first term that obtained from a standard-liquid theory (mean-spherical approximation) subtracting the long-wavelength fluctuations as
$\protect \lbrace -\alpha \rho ^2\protect \rbrace$
{αρ2}
. In other works f0 is evaluated using the complete expression for the free energy; i.e., including all terms related to the attractive part of the potential.
93.
J. D.
van der Waals
,
J. Stat. Phys.
20
,
200
(
1979
).
94.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
28
,
258
(
1958
).
95.
In fact the volume is defined as Vn = (zλn/2)3 in recent papers (Refs. 63–65), with an extra parameter z that is adjusted to values close to 1. L is not mentioned in such expression, but Vn is written in terms of λ1; the L is introduced in our derivation to establish the link with the method of
Prausnitz
 et al (Refs. 48, 49, 51, and 52), where λ1 = 2L.
96.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
2856
(
1967
).
97.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
4714
(
1967
).
98.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
99.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
100.
W. G.
Chapman
,
J. Chem. Phys.
93
,
4299
(
1990
).
101.
G.
Jackson
,
W. G.
Chapman
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1
(
1988
).
102.
J. K.
Percus
and
G. J.
Yevick
,
Phys. Rev.
110
,
1
(
1958
).
103.
G. J.
Gloor
,
G.
Jackson
,
F. J.
Blas
,
E. M.
del Río
, and
E.
de Miguel
,
J. Chem. Phys.
121
,
12740
(
2004
).
106.
B. H.
Patel
,
H.
Docherty
,
S.
Varga
,
A.
Galindo
, and
G. C.
Maitland
,
Mol. Phys.
103
,
129
(
2005
).
107.
F.
del Río
,
E.
Ávalos
,
R.
Espíndola
,
L. F.
Rull
,
G.
Jackson
, and
S.
Lago
,
Mol. Phys.
100
,
2531
(
2002
).
108.
L.
Vega
,
E.
de Miguel
,
L. F.
Rull
,
G.
Jackson
, and
I. A.
McLure
,
J. Chem. Phys.
96
,
2296
(
1992
).
109.
A.
Gil-Villegas
,
F.
del Rìo
, and
A. L.
Benavides
,
Fluid Phase Equilib.
119
,
97
(
1996
).
110.
H.
Docherty
and
A.
Galindo
,
Mol. Phys.
104
,
3551
(
2006
).
111.
H.
Liu
,
S. K.
Kumar
, and
F.
Sciortino
,
J. Chem. Phys.
127
,
084902
(
2007
).
112.
H.
Liu
,
S. K.
Kumar
,
F.
Sciortino
, and
G. T.
Evans
,
J. Chem. Phys.
130
,
44902
(
2009
).
113.
G.
Orkoulas
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
110
,
1581
(
1999
).
114.
L. A.
Davies
,
A.
Gil-Villegas
,
G.
Jackson
,
S.
Calero
, and
S.
Lago
,
Phys. Rev. E
57
,
2035
(
1998
).
115.
F. A.
Escobedo
and
J. J.
de Pablo
,
Mol. Phys.
87
,
347
(
1996
).
116.
J. R.
Elliott
and
L.
Hu
,
J. Chem. Phys.
110
,
3043
(
1999
).
117.
A.
Yethiraj
and
C. K.
Hall
,
J. Chem. Phys.
95
,
1999
(
1991
).
You do not currently have access to this content.