Using analytical techniques and Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a narrow channel of width R embedded in two dimensions, driven by a force proportional to the number of monomers in the channel. Such a setup mimics typical experimental situations in nano/microfluidics. During the translocation process if the monomers in the channel can sufficiently quickly assume steady state motion, we observe the scaling τ ∼ N/F of the translocation time τ with the driving force F per bead and the number N of monomers per chain. With smaller channel width R, steady state motion cannot be achieved, effecting a nonuniversal dependence of τ on N and F. From the simulations we also deduce the waiting time distributions under various conditions for the single segment passage through the channel entrance. For different chain lengths but the same driving force, the curves of the waiting time as a function of the translocation coordinate s feature a maximum located at identical smax, while with increasing the driving force or the channel width the value of smax decreases.

1.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology of the Cell
(
Garland Publishing
,
New York, NY
,
2002
).
2.
A.
Meller
,
J. Phys.: Condens. Matter
15
,
R581
(
2003
).
3.
M.
Muthukumar
,
Annu. Rev. Biophys. Biomol. Struct.
36
,
435
(
2007
).
4.
T. A.
Rapoport
,
Nature (London)
450
,
663
(
2007
).
5.
See, for instance,
B. B.
Griffiths
and
O.
McClain
,
J. Basic Microbiol.
28
,
427
(
1988
).
6.
J. J.
Kasianowicz
,
E.
Brandin
,
D.
Branton
, and
D. W.
Deamer
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
13770
(
1996
);
[PubMed]
M.
Akeson
,
D.
Branton
,
J. J.
Kasianowicz
,
E.
Brandin
, and
D. W.
Deamer
,
Biophys. J.
77
,
3227
(
1999
);
[PubMed]
A.
Meller
,
L.
Nivon
,
E.
Brandin
,
J. A.
Golovchenko
, and
D.
Branton
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
1079
(
2000
);
[PubMed]
A.
Meller
,
L.
Nivon
, and
D.
Branton
,
Phys. Rev. Lett.
86
,
3435
(
2001
).
[PubMed]
7.
M.
Wanunu
,
J.
Suntin
,
B.
McNally
,
A.
Chow
, and
A.
Meller
,
Biophys. J.
95
,
1193
(
2008
);
A. J.
Storm
,
C.
Storm
,
J. H.
Chen
,
H.
Zandbergen
,
J. F.
Joanny
, and
C.
Dekker
,
Nano Lett.
5
,
1193
(
2005
);
[PubMed]
U. F.
Keyser
,
B. N.
Koeleman
,
S.
van Dorp
,
D.
Krapf
,
R. M. M.
Smeets
,
S. G.
Lemay
,
N. H.
Dekker
, and
C.
Dekker
,
Nat. Phys.
2
,
473
(
2006
);
C.
Dekker
,
Nat. Nanotechnol.
2
,
209
(
2007
).
[PubMed]
8.
J.
Li
,
D.
Stein
,
C.
McMullan
,
D.
Branton
,
M. J.
Aziz
, and
J. A.
Golovchenko
,
Nature (London)
412
,
166
(
2001
);
A. J.
Storm
,
J. H.
Chen
,
X. S.
Ling
,
H. W.
Zandbergen
, and
C.
Dekker
,
Nature Mater.
2
,
537
(
2003
).
9.
W.
Sung
and
P. J.
Park
,
Phys. Rev. Lett.
77
,
783
(
1996
).
10.
M.
Muthukumar
,
J. Chem. Phys.
111
,
10371
(
1999
).
11.
M.
Muthukumar
,
J. Chem. Phys.
118
,
5174
(
2003
).
12.
J.
Chuang
,
Y.
Kantor
, and
M.
Kardar
,
Phys. Rev. E
65
,
011802
(
2001
).
13.
K.
Luo
,
T.
Ala-Nissila
, and
S. C.
Ying
,
J. Chem. Phys.
124
,
034714
(
2006
).
14.
K. F.
Luo
,
S. T. T.
Ollila
,
I.
Huopaniemi
,
T.
Ala-Nissila
,
P.
Pomorski
,
M.
Karttunen
,
S. C.
Ying
, and
A.
Bhattacharya
,
Phys. Rev. E
78
,
050901
R
(
2008
).
15.
J. L. A.
Dubbeldam
,
A.
Milchev
,
V. G.
Rostiashvili
, and
T. A.
Vilgis
,
Phys. Rev. E
76
,
010801
R
(
2007
).
16.
Y.
Kantor
and
M.
Kardar
,
Phys. Rev. E
69
,
021806
(
2004
).
17.
K. F.
Luo
,
I.
Huopaniemi
,
T.
Ala-Nissila
, and
S. C.
Ying
,
J. Chem. Phys.
124
,
114704
(
2006
);
[PubMed]
18.
S.
Matysiak
,
A.
Montesi
,
M.
Pasquali
,
A. B.
Kolomeisky
, and
C.
Clementi
,
Phys. Rev. Lett.
96
,
118103
(
2006
).
19.
J. L. A.
Dubbeldam
,
A.
Milchev
,
V. G.
Rostiashvili
, and
T. A.
Vilgis
,
Europhys. Lett.
79
,
18002
(
2007
).
20.
H.
Vocks
,
D.
Panja
,
G. T.
Barkema
, and
R. C.
Ball
,
J. Phys.: Condens. Matter
20
,
095224
(
2008
).
21.
K. F.
Luo
,
T.
Ala-Nissila
,
S. C.
Ying
, and
A.
Bhattacharya
,
J. Chem. Phys.
126
,
145101
(
2007
);
[PubMed]
22.
A.
Bhattacharya
,
W. H.
Morrison
,
K.
Luo
,
T.
Ala-Nissila
,
S. C.
Ying
,
A.
Milchev
, and
K.
Binder
,
Eur. Phys. J. E
29
,
423
(
2009
);
A.
Bhattacharya
and
K.
Binder
,
Phys. Rev. E
81
,
041804
(
2010
).
23.
M. G.
Gauthier
and
G. W.
Slater
,
J. Chem. Phys.
128
,
205103
(
2008
).
[PubMed]
24.
25.
A.
Milchev
,
K.
Binder
, and
A.
Bhattacharya
,
J. Chem. Phys.
121
,
6042
(
2004
).
26.
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
(
2000
);
R.
Metzler
and
J.
Klafter
,
J. Phys. A
37
,
R161
(
2004
).
27.
R.
Metzler
and
J.
Klafter
,
Biophys. J.
85
,
2776
(
2003
).
28.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, NY
,
1979
);
M.
Daoud
and
P. G.
de Gennes
,
J. Phys. (Paris)
38
,
85
(
1977
).
29.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
30.
M.
Rubinstein
and
R.
Colby
,
Polymer Physics
(
Oxford University Press
,
Oxford
,
2003
).
31.
S. T. T.
Ollila
,
K. F.
Luo
,
T.
Ala-Nissila
, and
S. C.
Ying
,
Eur. Phys. J. E
28
,
385
(
2009
).
32.
K.
Luo
,
T.
Ala-Nissila
,
S. C.
Ying
, and
R.
Metzler
,
EPL
88
,
68006
(
2009
).
33.
I.
Huopaniemi
,
K. F.
Luo
,
T.
Ala-Nissila
, and
S. C.
Ying
,
Phys. Rev. E
75
,
061912
(
2007
).
34.
S. F.
Simon
,
C. S.
Peskin
, and
G. F.
Oster
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
3770
(
1992
);
[PubMed]
R.
Zandi
,
D.
Reguera
,
J.
Rudnick
, and
W. M.
Gelbart
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
8649
(
2003
);
[PubMed]
T.
Ambjornsson
and
R.
Metzler
,
Phys. Biol.
1
,
77
(
2004
);
[PubMed]
T.
Ambjornsson
,
M. A.
Lomholt
, and
R.
Metzler
,
J. Phys. Cond. Matter
17
,
S3945
(
2005
);
Y.
Kafri
,
D. K.
Lubelski
, and
D. R.
Nelson
,
Biophys. J.
86
,
3373
(
2004
);
[PubMed]
R.
Abdolvahab
,
M. R.
Ejtehadi
, and
R.
Metzler
,
Phys. Rev. E
83
,
011902
(
2011
).
35.
J. O.
Tegenfeldt
,
C.
Prinz
,
H.
Cao
,
R. L.
Huang
,
R. H.
Austin
,
S. Y.
Chou
,
E. C.
Cox
, and
J. C.
Sturm
,
Anal. Bioanal. Chem.
378
,
1678
(
2004
).
36.
L. H.
Thamdrup
,
A.
Klukowska
, and
A.
Kristensen
,
Nanotechnology
19
,
125301
(
2008
).
37.
T.
Ambjornsson
,
S. P.
Apell
,
Z.
Konkoli
,
E. A.
Di Marzio
, and
J. J.
Kasianowicz
,
J. Chem. Phys.
117
,
4063
(
2002
).
38.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1991
).
39.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1987
).
40.
D. L.
Ermak
and
H.
Buckholz
,
J. Comput. Phys.
35
,
169
(
1980
).
41.
A.
Lzmitli
,
D. C.
Schwartz
,
M. D.
Graham
, and
J. J.
de Pablo
,
J. Chem. Phys.
128
,
085102
(
2008
).
42.
M.
Fyta
,
S.
Melchionna
,
S.
Succi
, and
E.
Kaxiras
,
Phys. Rev. E
78
,
036704
(
2008
).
43.
M. G.
Gauthier
and
G. W.
Slater
,
Eur. Phys. J. E
25
,
17
(
2008
);
S.
Guillouzic
and
G. W.
Slater
,
Phys. Lett. A
359
,
261
(
2006
).
44.
K.
Luo
and
R.
Metzler
,
Phys. Rev. E
82
,
021922
(
2010
).
45.
H. S.
Yong
and
K. F.
Luo
(unpublished).
46.
T. W.
Burkhardt
and
I.
Guim
,
Phys. Rev. E
58
,
5833
(
1999
).
You do not currently have access to this content.