The dynamics of flow-induced translocation of polymers through a fluidic channel has been studied by dissipative particle dynamics (DPD) approach. Unlike implicit solvent models, the many-body energetic and hydrodynamic interactions are preserved naturally by incorporating explicit solvent particles in this approach. The no-slip wall boundary and the adaptive boundary conditions have been implemented in the modified DPD approach to model the hydrodynamic flow within a specific wall structure of fluidic channel and control the particles' density fluctuations. The results show that the average translocation time versus polymer chain length satisfies a power-law scaling of τ ∼N1.152. The conformational changes and translocation dynamics of polymers through the fluidic channel have also been investigated in our simulations, and two different translocation processes, i.e., the single-file and double-folded translocation events, have been observed in detail. These findings may be helpful in understanding the conformational and dynamic behaviors of such polymer and/or DNA molecules during the translocation processes.

1.
J. J.
Kasianowicz
,
E.
Brandin
,
D.
Branton
, and
D. W.
Deamer
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
13770
(
1996
).
2.
J.
Han
,
S. W.
Turner
, and
H. G.
Craighead
,
Phys. Rev. Lett.
83
,
1688
(
1999
).
3.
A.
Meller
,
L.
Nivon
, and
D.
Branton
,
Phys. Rev. Lett.
86
,
3435
(
2001
).
4.
J. L.
Li
,
M.
Gershow
,
D.
Stein
,
E.
Brandin
, and
J. A.
Golovchenko
,
Nature Mater.
2
,
611
(
2003
).
5.
A. F.
Sauer-Budge
,
J. A.
Nyamwanda
,
D. K.
Lubensky
, and
D.
Branton
,
Phys. Rev. Lett.
90
,
238101
(
2003
).
6.
A. J.
Storm
,
C.
Storm
,
J. H.
Chen
,
H.
Zandbergen
,
J. F.
Joanny
, and
C.
Dekker
,
Nano Lett.
5
,
1193
(
2005
).
7.
8.
G.
Maglia
,
M. R.
Restrepo
,
E.
Mikhailova
, and
H.
Bayley
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
19720
(
2008
).
9.
H. T.
Liu
,
J. Y.
Tang
,
H.
Liu
,
P.
Pang
,
D.
Cao
,
P.
Krstic
,
S.
Joseph
,
S.
Lindsay
, and
C.
Nuckolls
,
Science
327
,
64
(
2010
).
10.
W.
Sung
and
P. J.
Park
,
Phys. Rev. Lett.
77
,
783
(
1996
).
11.
M.
Muthukumar
,
J. Chem. Phys.
111
,
10371
(
1999
).
12.
M.
Muthukumar
,
J. Chem. Phys.
118
,
5174
(
2003
).
13.
D.
Panja
and
G. T.
Barkema
,
Biophys. J.
94
,
1630
(
2008
).
14.
C. T. A.
Wong
and
M.
Muthukumar
,
J. Chem. Phys.
128
,
154903
(
2008
).
15.
C. T. A.
Wong
and
M.
Muthukumar
,
Biophys. J.
95
,
3619
(
2008
).
16.
A.
Mohan
,
A. B.
Kolomeisky
, and
M.
Pasquali
,
J. Chem. Phys.
133
,
024902
(
2010
).
17.
J. E.
Reiner
,
J. J.
Kasianowicz
,
B. J.
Nablo
, and
W. F.
Robertson
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
12080
(
2010
).
18.
M.
Muthukumar
,
Phys. Rev. Lett.
86
,
3188
(
2001
).
19.
A.
Milchev
,
K.
Binder
, and
A.
Bhattacharya
,
J. Chem. Phys.
121
,
6042
(
2004
).
20.
S.
Matysiak
,
A.
Montesi
,
M.
Pasquali
,
A. B.
Kolomeisky
, and
C.
Clementi
,
Phys. Rev. Lett.
96
,
118103
(
2006
).
21.
M.
Muthukumar
and
C. Y.
Kong
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
5273
(
2006
).
22.
I.
Huopaniemi
,
K. F.
Luo
,
T.
Ala-Nissila
, and
S.-C.
Ying
,
J. Chem. Phys.
125
,
124901
(
2006
).
23.
K. F.
Luo
,
T.
Ala-Nissila
,
S.-C.
Ying
, and
A.
Bhattacharya
,
Phys. Rev. Lett.
99
,
148102
(
2007
).
24.
K. F.
Luo
,
T.
Ala-Nissila
,
P.
Pomorski
,
S.-C.
Ying
, and
A.
Bhattacharya
,
Phys. Rev. E
78
,
061918
(
2008
).
25.
M.
Bernaschi
,
S.
Melchionna
,
S.
Succi
,
M.
Fyta
, and
E.
Kaxiras
,
Nano Lett.
8
,
1115
(
2008
).
26.
M.
Fyta
,
S.
Melchionna
,
S.
Succi
, and
E.
Kaxiras
,
Phys. Rev. E
78
,
036704
(
2008
).
27.
K. F.
Luo
,
T.
Ala-Nissila
,
S.-C.
Ying
, and
A.
Bhattacharya
,
Phys. Rev. Lett.
100
,
058101
(
2008
).
28.
A. S.
Panwar
and
M.
Muthukumar
,
J. Am. Chem. Soc.
131
,
18563
(
2009
).
29.
A.
Bhattacharya
,
H.
Morrison
,
K. F.
Luo
,
T.
Ala-Nissila
,
S.-C.
Ying
,
A.
Milchev
, and
K.
Binder
,
Eur. Phys. J. E
29
,
423
(
2009
).
30.
Z. Y.
Yang
,
Z. Q.
Pan
,
L. X.
Zhang
, and
H. J.
Liang
,
Polymer
51
,
2795
(
2010
).
31.
K. F.
Luo
and
R.
Metzler
,
J. Chem. Phys.
133
,
075101
(
2010
).
32.
L.
Béguin
,
B.
Grassl
,
M.
Brochard-Wyart
,
M.
Rakib
, and
H.
Duval
,
Soft Matter
7
,
96
(
2011
).
33.
A.
Gopinathan
and
Y. W.
Kim
,
Phys. Rev. Lett.
99
,
228106
(
2007
).
34.
F.
Jin
and
C.
Wu
,
Phys. Rev. Lett.
96
,
237801
(
2006
).
35.
A. P.
Markesteijn
,
O. B.
Usta
,
I.
Ali
,
A. C.
Balazs
, and
J. M.
Yeomans
,
Soft Matter
5
,
4575
(
2009
).
36.
F.
Kapahnke
,
U.
Schmidt
,
D. W.
Heermann
, and
M.
Weiss
,
J. Chem. Phys.
132
,
164904
(
2010
).
37.
C.
Lörscher
,
T.
Ala-Nissila
, and
A.
Bhattacharya
,
Phys. Rev. E
83
,
011914
(
2011
).
38.
Z. Y.
Yang
,
S. B.
Li
,
L. X.
Zhang
,
A.
Rehman
, and
H. J.
Liang
,
J. Chem. Phys.
133
,
154903
(
2010
).
39.
T.
Sakaue
,
E.
Raphael
,
P. G.
de Gennes
, and
F.
Brochard-Wyart
,
Europhys. Lett.
72
,
83
(
2005
).
40.
A.
Nikoubashman
and
C. N.
Likos
,
J. Chem. Phys.
133
,
074901
(
2010
).
41.
D.
Stein
,
F. H. J.
van der Heyden
,
W. J. A.
Koopmans
, and
C.
Dekker
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
15853
(
2006
).
42.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
43.
P.
Nikunen
,
I.
Vattulainen
, and
M.
Karttunen
,
Phys. Rev. E
75
,
036713
(
2007
).
44.
H.
Liu
,
Y.-H.
Xue
,
H.-J.
Qian
,
Z.-Y.
Lu
, and
C.-C.
Sun
,
J. Chem. Phys.
129
,
024902
(
2008
).
45.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
46.
R. D.
Groot
and
T. J.
Madden
,
J. Chem. Phys.
108
,
8713
(
1998
).
47.
S. J.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
48.
I. V.
Pivkin
and
G. E.
Karniadakis
,
J. Comput. Phys.
207
,
114
(
2005
).
49.
I. V.
Pivkin
and
G. E.
Karniadakis
,
Phys. Rev. Lett.
96
,
206001
(
2006
).
50.
C. T.A.
Wong
and
M.
Muthukumar
,
J. Chem. Phys.
133
,
045101
(
2010
).
51.
X. J.
Li
,
I. V.
Pivkin
,
H. J.
Liang
, and
G. E.
Karniadakis
,
Macromolecules
42
,
3195
(
2009
).
52.
M. M.
Nardai
and
G.
Zifferera
,
J. Chem. Phys.
131
,
124903
(
2009
).
53.
R. D.
Groot
and
K. L.
Rabone
,
Biophys. J.
81
,
725
(
2001
).
54.
V.
Symeonidis
,
G. E.
Karniadakis
, and
B.
Caswell
,
Phys. Rev. Lett.
95
,
076001
(
2005
).
55.
L. H.
Gao
,
J.
Shillcock
, and
R.
Lipowsky
,
J. Chem. Phys.
126
,
015101
(
2007
).
56.
Y. M.
Wang
,
W. H.
Jiang
,
S.
Miller
, and
E.
Eckstein
,
J. Chromatogr. A
1198–1199
,
140
(
2008
).
57.
X. J.
Li
,
J. Y.
Guo
,
Y.
Liu
, and
H. J.
Liang
,
J. Chem. Phys.
130
,
074908
(
2009
).
58.
E.
Allahyarov
and
G.
Gompper
,
Phys. Rev. E
66
,
036702
(
2002
).
59.
F.
Varnik
and
K.
Binder
,
J. Chem. Phys.
117
,
6336
(
2002
).
60.
D.
Kauzlarić
,
A.
Greiner
, and
J. G.
Korvink
, in
Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show
2
,
454
(
2004
).
61.
M. J.
Rosenbluth
,
W. A.
Lam
, and
D. A.
Fletcher
,
Lab Chip
8
,
1062
(
2008
).
62.
M.
Muthukumar
,
J. Chem. Phys.
132
,
195101
(
2010
).
63.
See supplementary material at http://dx.doi.org/10.1063/1.3578180 for supplemental information regarding the dynamic processes in the translocation of polymer molecules within single-file, double-folded conformations, and double-folded conformations followed by single-file conformations.

Supplementary Material

You do not currently have access to this content.