In this paper we examine the phase behavior of the Weeks–Chandler–Andersen (WCA) potential with βε = 40. Crystal nucleation in this model system was recently studied by Kawasaki and Tanaka [Proc. Natl. Acad. Sci. U.S.A.107, 14036 (2010)] https://doi.org/10.1021/pr100656u, who argued that the computed nucleation rates agree well with experiment, a finding that contradicted earlier simulation results. Here we report an extensive numerical study of crystallization in the WCA model, using three totally different techniques (Brownian dynamics, umbrella sampling, and forward flux sampling). We find that all simulations yield essentially the same nucleation rates. However, these rates differ significantly from the values reported by Kawasaki and Tanaka and hence we argue that the huge discrepancy in nucleation rates between simulation and experiment persists. When we map the WCA model onto a hard-sphere system, we find good agreement between the present simulation results and those that had been obtained for hard spheres [L. Filion, M. Hermes, R. Ni, and M. Dijkstra, J. Chem. Phys.133, 244115 (2010) https://doi.org/10.1063/1.3506838; S. Auer and D. Frenkel, Nature409, 1020 (2001) https://doi.org/10.1038/35059035].

1.
T.
Kawasaki
and
H.
Tanaka
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
14036
(
2010
).
2.
K.
Schätzel
and
B. J.
Ackerson
,
Phys. Rev. E
48
,
3766
(
1993
).
3.
J. L.
Harland
and
W.
van Megen
,
Phys. Rev. E
55
,
3054
(
1997
).
4.
C.
Sinn
,
A.
Heymann
,
A.
Stipp
, and
T.
Palberg
,
Prog. Colloid Polym. Sci.
118
,
266
(
2001
).
5.
L.
Filion
,
M.
Hermes
,
R.
Ni
, and
M.
Dijkstra
,
J. Chem. Phys.
133
,
244115
(
2010
).
6.
S.
Auer
and
D.
Frenkel
,
Nature (London)
409
,
1020
(
2001
).
7.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
31
,
459
(
1959
).
8.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
9.
A.
Ahmed
and
R. J.
Sadus
,
Phys. Rev. E
80
,
061101
(
2009
).
10.
D.
Frenkel
and
A. J. C.
Ladd
,
J. Chem. Phys.
81
,
3188
(
1984
).
11.
J. M.
Polson
,
E.
Trizac
,
S.
Pronk
, and
D.
Frenkel
,
J. Chem. Phys.
112
,
5339
(
2000
).
12.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic
,
San Diego, CA
,
2002
).
13.
T.
Kawasaki
and
H.
Tanaka
, private communication (
2010–2011
).
14.
P.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
Faraday Discuss.
104
,
93
(
1996
).
15.
P. R.
ten Wolde
, Ph.D. thesis,
University of Amsterdam
,
1998
.
16.
M.
Allen
and
D.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1987
).
17.
S.
Auer
and
D.
Frenkel
,
J. Chem. Phys.
120
,
3015
(
2004
).
18.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
19.
S.
Auer
, Ph.D. thesis,
University of Amsterdam
,
2002
.
20.
The number densities appearing in Figs. 4 and 6 were obtained directly via communications with the authors of Ref. 1.
21.
R. L.
Davidchack
and
B. B.
Laird
,
J. Chem. Phys.
108
,
9452
(
1998
).
22.
W. G.
Hoover
and
F. H.
Ree
,
J. Chem. Phys.
49
,
3609
(
1968
).
23.
R. J.
Speedy
,
J. Phys.: Condens. Matter
10
,
4387
(
1998
).
24.
R. J.
Speedy
,
J. Phys.: Condens. Matter
9
,
8591
(
1997
).
25.
S.
Auer
and
D.
Frenkel
,
J. Phys.: Condens. Matter
14
,
7667
(
2002
).
26.
S.
Auer
,
W. C. K.
Poon
, and
D.
Frenkel
,
Phys. Rev. E
67
,
020401
(
2003
).
You do not currently have access to this content.