A formalism is derived for the computation of partial differential cross sections for electron photodetachment and photoionization processes that leave the residual or target molecule in electronic states that are strongly coupled by conical intersections. Because the electronic states of the target are nonadiabatically coupled, the standard adiabatic states approach of solving the electronic Schrödinger equation for the detached electron at fixed nuclear geometries and then vibrationally averaging must be fundamentally modified. We use a Lippmann–Schwinger equation based approach, which leads naturally to a partitioning of the transition amplitude into a Dyson orbital like part plus a scattering correction. The requisite Green's function is that developed in our previous paper for the direct determination of total integral cross sections. The method takes proper account of electron exchange, possible nonorthogonality of the orbital describing the detached electron, and nonadiabatic effects in the product molecule. The Green's function is constructed in an L2 basis using complex scaling techniques. The accurate treatment of nonadiabatic effects in the residual molecule is accomplished using the multimode vibronic coupling model. For photodetachment, an approximate approach, which is less computationally demanding, is suggested.

1.
D. M.
Neumark
,
Annu. Rev. Phys. Chem.
52
,
255
(
2001
).
2.
R.
Continetti
,
Annu. Rev. Phys. Chem.
52
,
165
(
2001
).
3.
T.
Seidman
,
Annu. Rev. Phys. Chem.
53
,
41
(
2002
).
4.
K. L.
Reid
,
Annu. Rev. Phys. Chem.
54
,
397
(
2003
).
5.
A.
Stolow
,
Annu. Rev. Phys. Chem.
54
,
89
(
2003
).
6.
K. L.
Reid
,
Int. Rev. Phys. Chem
27
,
607
(
2008
).
7.
A.
Stolow
and
J. G.
Underwood
,
Adv. Chem. Phys.
139
,
497
(
2008
).
8.
D. M.
Neumark
,
J. Phys. Chem. A
112
,
13287
(
2008
).
9.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
10.
S.
Mahapatra
,
G. A.
Worth
,
H.-D.
Meyer
,
L. S.
Cederbaum
, and
H.
Köppel
,
J. Phys. Chem. A
105
,
5567
(
2001
).
11.
J.
Schmidt-Klügmann
,
H.
Köppel
,
S.
Schmatz
, and
P.
Botschwina
,
Chem. Phys. Lett.
369
,
21
(
2003
).
12.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
, “
The multimode vibronic coupling approach,” in Conical Intersections
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
New Jersey
,
2004
), vol.
15
, p.
323
.
13.
T.
Ichino
,
A. J.
Gianola
,
W. C.
Lineberger
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
084312
(
2006
).
14.
B. N.
Papas
,
M. S.
Schuurman
, and
D. R.
Yarkony
,
J. Chem. Phys.
129
,
124104
(
2008
).
15.
R. R.
Lucchese
,
G.
Raseev
, and
V.
McKoy
,
Phys. Rev. A
25
,
2572
(
1982
).
16.
C. M.
Oana
and
A. I.
Krylov
,
J. Chem. Phys.
131
,
124114
(
2009
).
17.
S.
Patchkovskii
,
Z.
Zhao
,
T.
Brabec
, and
D. M.
Villenueve
,
Phys. Rev. Lett.
97
,
123003
(
2006
).
18.
I. G.
Kaplan
,
B.
Barbiellini
, and
A.
Bansil
,
Phys. Rev. B
68
,
235104
(
2003
).
19.
B. T.
Pickup
,
Chem. Phys.
19
,
193
(
1977
).
20.
B. T.
Pickup
and
O.
Goscinsky
,
Mol. Phys.
26
,
1013
(
1973
).
21.
C. M.
Oana
and
A. I.
Krylov
,
J. Chem. Phys.
127
,
234106
(
2007
).
22.
M.
Hakala
,
S.
Huotari
,
K.
Hämäläinen
,
S.
Manninen
,
P.
Wernet
,
A.
Nilsson
, and
L. G. M.
Pettersson
,
Phys. Rev. B
70
,
125413
(
2004
).
23.
Y.
Zheng
,
W. N.
Pang
,
R. C.
Shang
,
X. J.
Chen
,
C. E.
Brion
,
T. K.
Ghanty
, and
E. R.
Davidson
,
J. Chem. Phys.
111
,
9526
(
1999
).
24.
G.
Bandarage
and
R. R.
Lucchese
,
Phys. Rev. A
47
,
1989
(
1993
).
25.
T. M.
Rescigno
,
B. H.
Lengsfield
 III
, and
C. W.
McCurdy
, “
Incorporation of modern electronic structure methods in electron-molecule collision problems: Variational calculations using the complex Kohn method
,” in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), p.
501
.
26.
C.
Winstead
and
V.
McKoy
, “
Studies of electron molecule collisions on massively parallel computers
,” in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), p.
1375
.
27.
M. A.
Morrison
and
W.
Sun
, “
How to calculate rotational and vibrational cross sections for low-energy scattering from diatomic molecules using close-coupling techniques
,” in
Computational Methods for Electron-Molecule Collisions
, edited by
W. M.
Huo
and
F. A.
Gianturco
(
Plenum
,
New York
,
1995
).
28.
H.
Feng
,
W.
Sun
,
M. A.
Morrison
, and
A.
Feldt
,
J. Phys. B.
42
,
175201
(
2009
).
29.
S.
Han
and
D. R.
Yarkony
,
J. Chem. Phys.
133
,
194107
(
2010
).
30.
L. I.
Schiff
,
Quantum Mechanics
(
McGraw-Hill
,
New York
,
1960
).
31.
S.
Han
and
W. P.
Reinhardt
,
J. Phys. B
28
,
3347
(
1995
).
32.
W. P.
Reinhardt
,
Annu. Rev. Phys. Chem.
33
,
223
(
1982
).
33.
W. P.
Reinhardt
and
S.
Han
,
Int. J. Quantum Chem.
57
,
327
(
1995
).
34.
J. C.
Tully
,
R. S.
Berry
, and
B. J.
Dalton
,
Phys. Rev.
176
,
95
(
1968
).
35.
L. S.
Rodberg
and
R. M.
Thaler
,
Introduction to the Quantum Theory of Scattering
(
Academic
,
New York
,
1967
).
36.
J. R.
Taylor
,
Scattering Theory: The Quantum Theory of Nonrelativistic Collisions
(
Wiley
,
New York
,
1972
).
37.
R. N.
Zare
,
Angular Momentum
(
Wiley
,
New York
,
1988
).
38.
T. N.
Rescigno
and
V.
McKoy
,
Phys. Rev. A
12
,
522
(
1975
).
39.
S. F.
Boys
,
Proc. R. Soc. London, Ser. A
200
,
542
(
1950
).
40.
M.
Dupuis
,
J.
Rys
, and
H. F.
King
,
J. Chem. Phys.
65
,
111
(
1976
).
41.
J.
Rys
,
M.
Dupuis
, and
H.
King
,
J. Comput. Chem.
4
,
154
(
1983
).
42.
L. E.
McMurchie
and
E. R.
Davidson
,
J. Comput. Phys.
26
,
218
(
1978
).
43.
J. A.
Pople
and
W. J.
Hehre
,
J. Comput. Phys.
27
,
161
(
1978
).
44.
P. M. W.
Gill
,
M.
Head-Gordon
, and
J. A.
Pople
,
J. Phys. Chem.
94
,
5564
(
1990
).
45.
S.
Obara
and
A.
Saika
,
J. Chem. Phys.
84
,
3963
(
1986
).
46.
M.
Head-Gordon
and
J. A.
Pople
,
J. Chem. Phys.
89
,
5777
(
1988
).
47.
P. M. W.
Gill
and
J. A.
Pople
,
Int. J. Quantum Chem.
40
,
753
(
1991
).
48.
K.
Ishida
,
Int. J. Quantum Chem.
59
,
209
(
1996
).
49.
K.
Ishida
,
J. Comput. Chem.
19
,
923
(
1998
).
50.
K.
Ishimura
and
S.
Nagase
,
Theor. Chem. Acc.
120
,
185
(
2008
).
51.
C.
Kurcz
, “
Fast convolutions with Helmholtz Green's functions and radially symmetric band-limited kernels
,” Ph.D. dissertation (
Department of Applied Mathematics, University of Colorado
,
2008
).
52.
G.
Beylkin
,
C.
Kurcz
, and
L.
Monzon
,
Proc. R. Soc. London, Ser. A
464
,
3301
(
2008
).
53.
G.
Beylkin
,
C.
Kurcz
, and
L.
Monzon
,
J. Comput. Phys.
228
,
2770
(
2009
).
You do not currently have access to this content.