We describe a new dynamic Monte Carlo model to simulate the operation of a polymer-blend solar cell; this model provides major improvements with respect to the one we developed earlier [J. Phys. Chem. B 114, 36 (2010)] by incorporating the Poisson equation and a charge thermoactivation mechanism. The advantage of the present approach is its capacity to deal with a nonuniform electrostatic potential that dynamically depends on the charge distribution. In this way, the unbalance in electron and hole mobilities and the space-charge induced potential distribution can be treated explicitly. Simulations reproduce well the experimental I-V curve in the dark and the open-circuit voltage under illumination of a polymer-blend solar cell. The dependence of the photovoltaic performance on the difference in electron and hole mobilities is discussed.

1.
J.-L.
Brédas
and
J. R.
Durrant
,
Acc. Chem. Res.
42
,
1689
(
2009
).
2.
S.
Gunes
,
H.
Neugebauer
, and
N. S.
Sariciftci
,
Chem. Rev.
107
,
1324
(
2007
).
3.
G.
Yu
,
J.
Gao
,
J. C.
Hummelen
,
F.
Wudl
, and
A. J.
Heeger
,
Science
270
,
1789
(
1995
).
4.
H. Y.
Chen
,
J. H.
Hou
,
S. Q.
Zhang
,
Y. Y.
Liang
,
G. W.
Yang
,
Y.
Yang
,
L. P.
Yu
,
Y.
Wu
, and
G.
Li
,
Nat. Photonics
3
,
649
(
2009
).
5.
X.
Zhan
,
Z.
Tan
,
B.
Domercq
,
Z.
An
,
X.
Zhang
,
S.
Barlow
,
Y.
Li
,
D.
Zhu
,
B.
Kippelen
, and
S. R.
Marder
,
J. Am. Chem. Soc.
129
,
7246
(
2007
).
6.
M. C.
Scharber
,
D.
Mühlbacher
,
M.
Koppe
,
P.
Denk
,
C.
Waldauf
,
A. J.
Heeger
, and
C. J.
Brabec
,
Adv. Mater.
18
,
789
(
2006
).
7.
G.
Dennler
,
M. C.
Scharber
,
T.
Ameri
,
P.
Denk
,
K.
Forberich
,
C.
Waldauf
, and
C. J.
Brabec
,
Adv. Mater.
20
,
579
(
2008
).
8.
J.-L.
Brédas
,
J. E.
Norton
,
J.
Cornil
, and
V.
Coropceanu
,
Acc. Chem. Res.
42
,
1691
(
2009
).
9.
L. J. A.
Koster
,
E. C. P.
Smits
,
V. D.
Mihailetchi
, and
P. W. M.
Blom
,
Phys. Rev. B
72
,
085205
(
2005
).
10.
L. J. A.
Koster
,
V. D.
Mihailetchi
,
H.
Xie
, and
P. W. M.
Blom
,
Appl. Phys. Lett.
87
,
203502
(
2005
).
11.
P. K.
Watkins
,
A. B.
Walker
, and
G. L. B.
Verschoor
,
Nano Lett.
5
,
1814
(
2005
).
12.
R. A.
Marsh
,
C.
Groves
, and
N. C.
Greenham
,
J. Appl. Phys.
101
,
083509
(
2007
).
13.
L.
Meng
,
Y.
Shang
,
Q.
Li
,
Y.
Li
,
X.
Zhan
,
Z.
Shuai
,
R. G. E.
Kimber
, and
A. B.
Walker
,
J. Phys. Chem. B
114
,
36
(
2010
).
14.
M.
Casalegno
,
G.
Raos
, and
R.
Po
,
J. Chem. Phys.
132
,
094705
(
2010
).
15.
J. J.
Lukkien
,
J. P. L.
Segers
,
P. A. J.
Hilbers
,
R. J.
Gelten
, and
A. P. J.
Jansen
,
Phys. Rev. E
58
,
2598
(
1998
).
16.
J.
Hou
,
Z.
Tan
,
Y.
Yan
,
Y.
He
,
C.
Yang
, and
Y.
Li
,
J. Am. Chem. Soc.
128
,
4911
(
2006
).
17.
V. D.
Mihailetchi
,
J.
Wildeman
, and
P. W. M.
Blom
,
Phys. Rev. Lett.
94
,
126602
(
2005
).
18.
F.
Yang
and
S. R.
Forrest
,
ACS Nano
2
,
1022
(
2008
).
19.
C. A.
Spindt
,
I.
Brodie
,
L.
Humphrey
, and
E. R.
Westerberg
,
J. Appl. Phys.
47
,
5248
(
1976
).
20.
S.
Barth
,
U.
Wolf
, and
H.
Bässler
,
Phys. Rev. B
60
,
8791
(
1999
).
21.
J.
Hou
,
C.
Yang
,
C.
He
, and
Y.
Li
,
Chem. Commun.
8
,
871
(
2006
).
22.
R. A.
Marcus
,
Rev. Mod. Phys.
65
,
599
(
1993
).
23.
U.
Wolf
,
V. I.
Arkhipov
, and
H.
Bässler
,
Phys. Rev. B
59
,
7507
(
1999
).
24.
V. I.
Arkhipov
,
U.
Wolf
, and
H.
Bässler
,
Phys. Rev. B
59
,
7514
(
1999
).
25.
M.
Riede
,
T.
Mueller
,
W.
Tress
,
R.
Schueppel
, and
K.
Leo
,
Nanotechnology
19
,
424001
(
2008
).
26.
L. J. A.
Koster
,
V. D.
Mihailetchi
,
R.
Ramaker
, and
P. W. M.
Blom
,
Appl. Phys. Lett.
86
,
123509
(
2005
).
27.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley
,
New York
,
1981
).
28.
Y.
Shang
,
Q.
Li
,
L.
Meng
,
D.
Wang
, and
Z.
Shuai
,
Appl. Phys. Lett.
97
,
143511
(
2010
).
You do not currently have access to this content.