Asymptotic energy expressions for the weak-correlation limits of the two lowest energy states of the three-electron harmonium atom are obtained in closed forms. When combined with the known results for the strong-correlation limit, these expressions, which are correct through the second order of perturbation theory, yield robust Padé approximants that allow accurate estimation of energies in question for all magnitudes of the confinement strength.
REFERENCES
1.
M.
Taut
, Phys. Rev. A
48
, 3561
(1993
).2.
3.
J.
Cioslowski
and K.
Pernal
, J. Chem. Phys.
113
, 8434
(2000
), and the references cited therein.4.
R. J.
White
and W.
Byers-Brown
, J. Chem. Phys.
53
, 3869
(1970
).5.
J. M.
Benson
and W.
Byers-Brown
, J. Chem. Phys.
53
, 3880
(1970
).6.
P. M. W.
Gill
and D. P.
O’Neill
, J. Chem. Phys.
122
, 094110
(2005
).7.
J.
Cioslowski
and K.
Pernal
, J. Chem. Phys.
125
, 064106
(2006
).8.
J.
Cioslowski
and E.
Grzebielucha
, Phys. Rev. A
77
, 032508
(2008
).9.
K.
Varga
, P.
Navratil
, J.
Usukura
, and Y.
Suzuki
, Phys. Rev. B
63
, 205308
(2001
).10.
11.
T.
Vorrath
and R.
Blümel
, Eur. Phys. J. B
32
, 227
(2003
).12.
P. A.
Sundqvist
, S. Y.
Volkov
, Y. E.
Lozovik
, and M.
Willander
, Phys. Rev. B
66
, 075335
(2002
).13.
M.
Taut
, K.
Pernal
, J.
Cioslowski
, and V.
Staemmler
, J. Chem. Phys.
118
, 4818
(2003
).14.
See supplementary material at http://dx.doi.org/10.1063/1.3553558 for the numerical coefficients that enter Eq. (24) and the accuracy of its energy predictions.
© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.