We derive an analytical expression of the second virial coefficient of d-dimensional hard sphere fluids confined to slit pores by applying Speedy and Reiss’ interpretation of cavity space. We confirm that this coefficient is identical to the one obtained from the Mayer cluster expansion up to second order with respect to fugacity. The key step of both approaches is to evaluate either the surface area or the volume of the d-dimensional exclusion sphere confined to a slit pore. We, further, present an analytical form of thermodynamic functions such as entropy and pressure tensor as a function of the size of the slit pore. Molecular dynamics simulations are performed for d = 2 and d = 3, and the results are compared with analytically obtained equations of state. They agree satisfactorily in the low density regime, and, for given density, the agreement of the results becomes excellent as the width of the slit pore gets smaller, because the higher order virial coefficients become unimportant.

1.
F.
Gambale
,
M.
Bregante
,
F.
Stragapede
, and
A. M.
Cantu
,
J. Membr. Biol.
154
,
69
(
1996
).
2.
Z.
Siwy
,
I. D.
Kosińska
,
A.
Fuliński
, and
C. R.
Martin
,
Phys. Rev. Lett.
94
,
048102
(
2005
).
3.
D.
Reguera
,
G.
Schmid
,
P. S.
Burada
,
J. M.
Rubi
,
P.
Reimann
, and
P.
Hänggi
,
Phys. Rev. Lett.
96
,
130603
(
2006
).
4.
B. J.
Hinds
,
N.
Chopra
,
T.
Rantell
,
R.
Andrews
,
V.
Gavalas
, and
L. G.
Bachas
,
Science
303
,
62
(
2004
).
5.
K.
Hahn
,
J.
Kärger
, and
V.
Kukla
,
Phys. Rev. Lett.
76
,
2762
(
1996
).
6.
V.
Gupta
,
S. S.
Nivarthi
,
D.
Keffer
,
A. V.
McCormick
, and
H. T.
Davis
,
Science
274
,
164
(
1996
).
7.
C. T.
Kresge
,
M. E.
Leonowicz
,
W. J.
Roth
,
J. C.
Vartuli
, and
J. S.
Beck
,
Nature (London)
359
,
710
(
1992
).
8.
M. E.
Davis
,
Nature (London)
417
,
813
(
2002
).
9.
A.
Katz
and
M. E.
Davis
,
Nature (London)
403
,
286
(
2000
).
10.
P. S.
Burada
,
P.
Hänggi
,
F.
Marchesoni
,
G.
Schmid
, and
P.
Talkner
,
Chem. Phys. Chem
10
,
45
(
2009
).
11.
S. S.
Han
and
W. A.
Goddard
,
J. Am. Chem. Soc.
129
,
8422
(
2007
).
12.
S. S.
Han
,
W.-Q.
Deng
, and
W. A.
Goddard
,
Angew. Chem., Int. Ed.
46
,
6289
(
2007
).
13.
S. S.
Han
,
H.
Furukawa
,
O. M.
Yaghi
, and
W. A.
Goddard
,
J. Am. Chem. Soc.
130
,
11580
(
2008
).
14.
S. S.
Han
and
W. A.
Goddard
,
J. Phys. Chem. C
112
,
13431
(
2008
).
15.
S. S.
Han
,
J. L.
Mendoza-Cortes
, and
W. A.
Goddard
,
Chem. Soc. Rev.
38
,
1460
(
2009
).
16.
B. C. H.
Steele
and
A.
Heinzel
,
Nature (London)
414
,
345
(
2001
).
17.
L.
Carrette
,
K. A.
Friedrich
, and
U.
Stimming
,
Chem. Phys. Chem
1
,
162
(
2000
).
18.
19.
S. J.
Paddison
,
Annu. Rev. Mater. Res.
33
,
289
(
2003
).
20.
Q. F.
Li
,
R. H.
He
,
J. O.
Jensen
, and
N. J.
Bjerrum
,
Chem. Mater.
15
,
4896
(
2003
).
21.
K. A.
Mauritz
and
R. B.
Moore
,
Chem. Rev.
104
,
4535
(
2004
).
22.
M. A.
Hickner
and
B. S.
Pivovar
,
Fuel Cells
5
,
213
(
2005
).
23.
H.
Kim
,
W.-Q.
Deng
,
W. A.
Goddard
,
S. S.
Jang
,
M. E.
Davis
, and
Y.
Yan
,
J. Phys. Chem. C
113
,
819
(
2009
).
24.
Q. S.
Xin
,
I.
Hiyane
, and
P.
Siders
,
J. Chem. Soc., Faraday Trans.
90
,
973
(
1994
).
25.
26.
A. J.
Post
and
D. A.
Kofke
,
Phys. Rev. A
45
,
939
(
1992
).
27.
I. E.
Kamenetskiy
,
K. K.
Mon
, and
J. K.
Percus
,
J. Chem. Phys.
121
,
7355
(
2004
).
28.
D.
Mukamel
and
H. A.
Posch
,
J. Stat. Mech.: Theory Exp.
P03014
(
2009
).
29.
H.
Kim
,
C. H.
Cho
, and
E. K.
Lee
,
J. Theor. Comput. Chem.
4
,
305
(
2005
).
30.
H.
Kim
,
C.
Kim
,
E. K.
Lee
,
P.
Talkner
, and
P.
Hänggi
,
Phys. Rev. E
77
,
031202
(
2008
).
31.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
32.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
53
,
600
(
1970
).
33.
W. G.
Hoover
,
W. T.
Ashurst
, and
R.
Grover
,
J. Chem. Phys.
57
,
1259
(
1972
).
34.
W. G.
Hoover
,
N. E.
Hoover
, and
K.
Hanson
,
J. Chem. Phys.
70
,
1837
(
1979
).
35.
R. J.
Speedy
,
J. Chem. Soc., Faraday Trans. 2
76
,
693
(
1980
).
36.
R. J.
Speedy
and
H.
Reiss
,
Mol. Phys.
72
,
999
(
1991
).
37.
S.
Sastry
,
D. S.
Corti
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
Phys. Rev. E
56
,
5524
(
1997
).
38.
S.
Sastry
,
T. M.
Truskett
,
P. G.
Debenedetti
,
S.
Torquato
, and
F. H.
Stillinger
,
Mol. Phys.
95
,
289
(
1998
).
39.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
Cambridge, England
,
2001
).
40.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford, New York
,
1991
).
42.
J. C.
Maxwell
,
Philos. Trans. R. Soc. London
170
,
231
(
1879
).
43.
H. L.
Frisch
and
J. K.
Percus
,
Phys. Rev. E
60
,
2942
(
1999
).
44.
S.
Torquato
and
F. H.
Stillinger
,
Exp. Math.
15
,
307
(
2006
).
45.
S.
Torquato
and
F. H.
Stillinger
,
Phys. Rev. E
73
,
031106
(
2006
).
You do not currently have access to this content.