We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.

1.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Non-equilibrium Systems
(
Wiley
,
New York
,
1977
).
2.
A. S.
Mikhailov
,
Foundations of Synergetics I
(
Springer-Verlag
,
Berlin
,
1990
).
3.
R.
Imbihl
and
G.
Ertl
,
Chem. Rev.
95
,
697
(
1995
).
4.
J. W.
Evans
,
D.-J.
Liu
, and
M.
Tammaro
,
Chaos
12
,
131
(
2002
).
5.
D.-J.
Liu
and
J. W.
Evans
,
Surf. Sci.
603
,
1706
(
2009
).
6.
A. L.
Hodgkin
and
R. D.
Keynes
,
J. Physiol. (London)
128
,
61
(
1955
).
7.
T. E.
Harris
,
J. Appl. Probab.
2
,
323
(
1965
).
8.
P. A.
Fedders
,
Phys. Rev. B
16
,
1393
(
1977
).
9.
J. G.
Tsikoyiannis
and
J. E.
Wei
,
Chem. Eng. Sci.
46
,
233
(
1990
).
10.
M. S.
Okino
,
R. Q.
Snurr
,
H. H.
Kung
,
J. E.
Ochs
, and
M. L.
Mavrovouniotis
,
J. Chem. Phys.
111
,
2210
(
1999
).
11.
J.
Kärger
,
M.
Petzold
,
H.
Pfieffer
,
S.
Ernst
, and
J.
Weitkamp
,
J. Catal.
136
,
283
(
1992
).
12.
C.
Rodenbeck
,
J.
Kärger
, and
K.
Hahn
,
J. Catal.
157
,
656
(
1995
).
13.
C.
Rodenbeck
,
J.
Kärger
, and
K.
Hahn
,
Phys. Rev. E
55
,
5697
(
1997
).
14.
S. V
Nedea
,
A. P. J.
Jansen
,
J. J.
Lukkien
, and
P. A. J.
Hilbers
,
Phys. Rev. E
65
,
066701
(
2002
);
S. V
Nedea
,
A. P. J.
Jansen
,
J. J.
Lukkien
, and
P. A. J.
Hilbers
,
Phys. Rev. E
66
,
066705
(
2002
).
15.
S. V
Nedea
,
A. P. J.
Jansen
,
J. J.
Lukkien
, and
P. A. J.
Hilbers
,
Phys. Rev. E
67
,
046707
(
2003
).
16.
R.
Krishna
,
T. J. H.
Vlugt
, and
B.
Smit
,
Chem. Eng. Sci.
54
,
1751
(
1999
).
17.
D.
Paschek
and
R.
Krishna
,
Phys. Chem. Chem. Phys.
3
,
3185
(
2001
).
18.
J.
Quastel
,
Commun. Pure Appl. Math.
45
,
623
(
1992
).
19.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North Holland
,
Amsterdam
,
1981
).
20.
J. W.
Evans
,
Rev. Mod. Phys.
65
,
1281
(
1993
).
22.
J. W.
Evans
,
Phys. Rev. B
41
,
2158
(
1990
).
23.
T. L.
Hill
,
Introduction to Statistical Thermodynamics
(
Addison-Wesley
,
Reading, MA
,
1960
).
24.
J. W.
Evans
and
D. K.
Hoffman
,
Phys. Rev. B
30
,
2704
(
1984
).
25.
For Wdiff ≪1, the steady-state 〈An〉 ≈0 except for n = 1 and L. Solving Eq. (1a) yields 〈A1〉 = pA〈X1〉 with pA = Wdes/(Wdes+Wrx), and 〈B1〉 = pB〈X1〉 with pA + pB = 1.
26.
H.
Spohn
,
Large Scale Dynamics in Interacting Particle Systems
(
Springer-Verlag
,
Berlin
,
1991
).
27.
Onsager theory writes JK = − ∑M σK,M ∂/x μM, where μM is the chemical potential for species M, and σK,M are components of the conductivity tensor. Without interactions, one has that μK = (kBT) ln[〈K〉(1−〈X〉)−1]. The MF approximation sets σK,M ∝ (kBT)−1〈K〉(1−〈X〉)δK,M.
28.
29.
J. W.
Evans
,
J. Chem. Phys.
97
,
572
(
1992
).
30.
See
X.
Guo
,
Y.
De Decker
, and
J. W.
Evans
,
Phys. Rev. E
82
,
021121
(
2010
). h-RDE have been extracted for pair approximations in simple single-species reaction diffusion models. However, for this two-species model, there are additional challenges related to the asymptotic convergence of continuum quantities a−1 〈AnBn+1〉 ∼ [AB](x) and a−1 〈BnAn+1〉 ∼ [BA](x).
31.
There is partial randomization of configurations as Wdiff→∞ (Ref. [15]): configurations with the same number of particles and sequence of particle types have equal probability.
32.
In the steady-state, one has Wrx A(x) = −∂/∂x JA = DX(1−Xeq) ∂2/∂x2 A(x) from Eqs. (6) and (10), solution of which immediately reveals the exponentially decaying solutions.
33.
The result C>0 and B<0 is consistent with the expectation that 〈AnBn+1〉 exceeds 〈Bn−1An〉 given a higher B-concentration further into the pore.
34.
J.
Crank
,
Mathematics of Diffusion
(
Oxford University Press
,
Oxford, UK
,
1956
).
35.
S.
Huh
,
J. W.
Wiench
,
J.-C.
Yoo
,
M.
Pruski
, and
V. S.-Y.
Lin
,
Chem. Mater.
15
,
4247
(
2003
).
36.
D.-J.
Liu
,
J.
Wang
,
D. M.
Ackerman
,
M.
Pruski
,
H.-T.
Chen
,
V. S.-Y.
Lin
, and
J. W.
Evans
, ACS Catalysis (submitted).
37.
M.
Tammaro
and
J. W.
Evans
,
J. Chem. Phys.
108
,
7805
(
1998
).
38.
K. W.
Kehr
,
K.
Binder
, and
S. M.
Reulein
,
Phys. Rev. B
39
,
4891
(
1989
).
You do not currently have access to this content.