The paper presents high-resolution experimental study and a direct potential construction of a shelflike state E(4)1Σ+ of the KCs molecule converging to K(42S) + Cs(52D) atomic limit; such data are of interest for selecting optical paths for producing and monitoring cold polar diatomics. The collisionally enhanced laser induced fluorescence (LIF) spectra corresponding to both spin-allowed E(4)1Σ+X(1)1Σ+ and spin-forbidden E(4)1Σ+a(1)3Σ+ transitions of KCs were recorded in visible region by Fourier transform spectrometer with resolution of 0.03 cm−1. Overall about 1650 rovibronic term values of the E(4)1Σ+ state of 39K133Cs and 41K133Cs isotopologues nonuniformly covering the energy range [16987, 18445] cm−1 above the minimum of the ground X-state were determined with the uncertainty of 0.01 cm−1. Experimental data field is limited by vibrational levels v′ ∈ [2, 74] with rotational quantum numbers J′ ∈ [1, 188]. The closed analytical form for potential energy curve (PEC) based on Chebyshev polynomial expansion (CPE) was implemented to a direct potential fit (DPF) of the experimental term values of the most abundant 39K133Cs isotopologue. Besides analyticity, regularity, correct long-range behavior, and nice convergence properties, the CPE form demonstrated optimal balance on flexibility and constraint for the DPF of a shelflike state aggravated by a limited data set. The mass-invariant properties of the CPE PEC were tested by the prediction of rovibronic term values of the 41K133Cs isotopomer which coincided with their experimental counterparts with standard deviation of 0.0048 cm−1. The CPE modeling is compared with the highly flexible pointwise inverted perturbation approach model, as well as with conventional Dunham analysis of restricted data set v′ ⩽ 50. Reliability of the empirical PEC is additionally confirmed by good agreement between the calculated and experimental relative intensity distributions in the long E(v′) → X(v″) LIF progressions.

1.
Cold Molecules: Theory, Experiment, Applications
, edited by
R.
Krems
,
W. S.
Stwalley
, and
B.
Friedrich
(
Taylor and Francis
,
Boca Raton, FL
,
2009
).
2.
J. M.
Hutson
and
P.
Soldan
,
Int. Rev. Phys. Chem. 
25
,
497
(
2006
).
3.
O.
Dulieu
and
C.
Gabbanini
,
Rep. Prog. Phys.
72
,
086401
(
2009
).
4.
W.
Jastrzebski
,
P.
Kortyka
,
P.
Kowalczyk
,
O.
Docenko
,
M.
Tamanis
,
R.
Ferber
,
A.
Pashov
,
H.
Knöckel
, and
E.
Tiemann
,
Eur. Phys. J. D
36
,
57
(
2005
).
5.
M.
Korek
,
A. R.
Allouche
,
K.
Fakhreddine
, and
A.
Chaalan
,
Can. J. Phys.
78
,
977
(
2000
).
6.
A. R.
Allouche
,
M.
Korek
,
K.
Fakherddin
,
A.
Chaalan
,
M.
Dagher
,
F.
Taher
, and
M.
Aubert-Frecon
,
J. Phys. B
33
,
2307
(
2000
).
7.
S. D.
Kraft
,
P.
Staanum
,
J.
Lange
,
L.
Vogel
,
R.
Wester
, and
M.
Weidemüller
,
J. Phys. B
39
,
S993
(
2006
).
8.
J.
Deiglmayr
,
A.
Grochola
,
M.
Repp
,
K.
Mörtlbauer
,
C.
Glück
,
J.
Lange
,
O.
Dulieu
,
R.
Wester
, and
M.
Weidemũller
,
Phys. Rev. Lett.
101
,
133004
(
2008
).
9.
J. P.
Shaffer
,
W.
Chalupczak
, and
N. P.
Bigelow
,
Phys. Rev. Lett.
82
,
1124
(
1999
).
10.
C.
Haimberger
,
J.
Kleinert
,
M.
Bhattacharya
, and
N. P.
Bigelow
,
Phys. Rev. A
70
,
021402
(
2004
).
11.
J. M.
Sage
,
S.
Sainis
,
T.
Bergeman
, and
D.
DeMille
,
Phys. Rev. Lett.
94
,
203001
(
2005
).
12.
A. J.
Kerman
,
J. M.
Sage
,
S.
Sainis
,
T.
Bergeman
, and
D.
DeMille
,
Phys. Rev. Lett.
92
,
153001
(
2004
).
13.
B.
Kim
and
K.
Yoshihara
,
J. Chem. Phys.
100
,
1849
(
1994
).
14.
A. F.
Nogueira
,
C. E.
Fellows
, and
T.
Bergeman
,
J. Chem. Phys.
129
,
136101
(
2008
).
15.
R.
Ferber
,
I.
Klincare
,
O.
Nikolayeva
,
M.
Tamanis
,
H.
Knöckel
,
E.
Tiemann
, and
A.
Pashov
,
J. Chem. Phys.
128
,
244316
(
2008
).
16.
R.
Ferber
,
I.
Klincare
,
O.
Nikolayeva
,
M.
Tamanis
,
H.
Knöckel
,
E.
Tiemann
, and
A.
Pashov
,
Phys. Rev. A
80
,
062501
(
2009
).
17.
18.
G. H.
Herzberg
,
Molecular Spectra and Molecular Structure I Spectra of Diatomic Molecules
(
D. Van Nostrand
,
Princeton, NJ
,
1950
).
20.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 77
(
Cambridge University Press
,
Cambridge
,
1999
).
21.
H.
Lefebvre-Brion
and
R. W.
Field
,
The Spectra and Dynamics of Diatomic Molecules
(
Academic
,
New York
,
2004
).
22.
Y. P.
Varshni
,
Rev. Mod. Phys.
29
,
664
(
1957
).
23.
G.
Simons
,
R. G.
Parr
, and
J. M.
Finlan
,
J. Chem. Phys.
59
,
3229
(
1973
).
24.
A. J.
Thakkar
,
J. Chem. Phys.
62
,
1693
(
1975
).
25.
J. F.
Ogilvie
,
Proc. Roy. Soc. (London)
A378
,
287
(
1981
).
26.
A. A.
Surkus
,
R. J.
Rakauskas
, and
A. B.
Bolotin
,
Chem. Phys. Lett.
105
,
291
(
1984
).
27.
A.
Pashov
,
W.
Jastrzȩbski
, and
P.
Kowalczyk
,
Comput. Phys. Commun.
128
,
622
(
2000
).
28.
A.
Pashov
,
W.
Jastrzȩbski
, and
P.
Kowalczyk
,
J. Chem. Phys.
113
,
6624
(
2000
).
29.
A.
Grochola
,
P.
Kowalczyk
,
W.
Jastrzȩbski
, and
A.
Pashov
J. Chem. Phys.
121
,
5754
(
2004
).
30.
A.
Pashov
,
W.
Jastrzȩbski
, and
P.
Kowalczyk
, personal communications (November 12,
2002
).
31.
P. G.
Hajigeorgiou
and
R. J.
LeRoy
,
J. Chem. Phys.
112
,
3949
(
2000
).
32.
R. J.
Le Roy
,
Y.
Huang
, and
C.
Jary
,
J. Chem. Phys.
125
,
164310
(
2006
).
33.
H.
Salami
,
A. J.
Ross
,
P.
Crozet
,
W.
Jastrzȩbski
,
P.
Kowalczyk
, and
R. J.
Le Roy
,
J. Chem. Phys.
126
,
194313
(
2007
).
34.
J. C.
Mason
and
D. C.
Handscomb
,
Chebyshev Polynomials
(
CRC
,
Boca Raton
,
2003
).
35.
A.
Kruzins
,
I.
Klincare
,
O.
Nikolayeva
,
M.
Tamanis
,
R.
Ferber
,
E. A.
Pazyuk
, and
A. V.
Stolyarov
,
Phys. Rev. A
81
,
042509
(
2010
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.3561318 for pointwise E(4)1Σ+ state IPA PEC, for experimental term values used to fit empirical PECs along with term values calculated using CPE PEC, for parameters of analytic CPE representation of E(4)1Σ+ PEC, as well as for molecular constants calculated for v′ = 0 − 74 from IPA and CPE PECS for both isotopologues. Supplementary materials also contain FORTRAN program for calculation of CPE PEC and examples of input and output files for this programme.
37.
R. J.
Le Roy
,
N.
Dattani
,
J. A.
Coxon
,
A.
Ross
, and
C.
Linton
,
J. Chem. Phys.
131
,
204309
(
2009
).
38.
K. B. S.
Eriksson
and
I.
Wenåker
,
Phys. Scr.
1
,
21
(
1970
).
39.
M.
Korek
,
Y. A.
Moghrabi
, and
A. R.
Allouche
,
J. Chem. Phys.
124
,
094309
(
2006
).
40.
M.
Marinesu
and
R.
Sadeghpour
,
Phys. Rev. A
59
,
390
(
1999
).
41.
B.
Bussery
,
Y.
Achkar
, and
M.
Aubert-Frécon
,
Chem. Phys.
116
,
319
(
1987
).
42.
J.
More
,
B.
Garbow
, and
K.
Hillstrom
,
MINIPACK software for solving nonlinear equations and nonlinear least squares problems
,
University of Chicago, Argonne National Laboratory
,
1999
. See http://www.netlib.org/minpack.
43.
44.
R. J.
LeRoy
,
LEVEL 8.0, A computer program for solving the radial Schrödinger equation for bound and quasibound levels
,
University of Waterloo
, Chemical Physics Research Report CP-663,
2007
.
45.
J. A.
Coxon
and
P. G.
Hajigeorgiou
,
J. Chem. Phys.
132
,
094105
(
2010
).
46.
A.
Jarmola
,
M.
Tamanis
,
R.
Ferber
,
E. A.
Pazyuk
, and
A. V.
Stolyarov
,
J. Quant. Spectrosc. Radiat. Transf.
95
,
165
(
2005
).
47.
M.
Aymar
and
O.
Dulieu
, personal communications (March 20,
2008
).
48.
J. T.
Kim
,
Y.
Lee
, and
A. V.
Stolyarov
,
J. Mol. Spectrosc.
256
,
57
(
2009
).

Supplementary Material

You do not currently have access to this content.