In this paper, we present the theory and implementation of a nonequilibrium solvation model for the symmetry-adapted cluster (SAC) and symmetry-adapted cluster–configuration interaction (SAC–CI) method in the polarizable continuum model. For nonequilibrium solvation, we adopted the Pekar partition scheme in which solvent charges are divided into dynamical and inertial components. With this nonequilibrium solvation scheme, a vertical transition from an initial state to a final state may be described as follows: the initial state is described by equilibrium solvation, while in the final state, the inertial component remains in the solvation for the initial state; the dynamical component will be calculated self-consistently for the final state. The present method was applied to the vertical photoemission and absorption of s-trans acrolein and methylenecyclopropene. The effect of nonequilibrium solvation was significant for a polar solvent.

1.
R.
Cammi
,
R.
Fukuda
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
133
,
024104
(
2010
).
2.
S.
Miertuš
,
E.
Scrocco
, and
J.
Tomasi
,
Chem. Phys.
55
,
117
(
1981
).
3.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
4.
H.
Nakatsuji
and
K.
Hirao
,
Chem. Phys. Lett.
47
,
569
(
1977
);
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
5.
H.
Nakatsuji
,
Chem. Phys. Lett.
59
,
362
(
1978
);
6.
T.
Nakajima
and
H.
Nakatsuji
,
Chem. Phys. Lett.
280
,
79
(
1997
);
T.
Nakajima
and
H.
Nakatsuji
,
Chem. Phys.
242
,
177
(
1999
);
K.
Toyota
,
M.
Ehara
, and
H.
Nakatsuji
,
Chem. Phys. Lett.
356
,
1
(
2002
);
K.
Toyota
,
M.
Ishida
,
M.
Ehara
,
M. J.
Frisch
, and
H.
Nakatsuji
,
Chem. Phys. Lett.
367
,
730
(
2003
).
7.
H.
Nakatsuji
,
Bull. Chem. Soc. Jpn.
78
,
1705
(
2005
);
J.
Hasegawa
and
H.
Nakatsuji
, in
Radiation Induced Molecular Phenomena in Nucleic Acid: A Comprehensive Theoretical and Experimental Analysis
, edited by
M.
Shukla
and
J.
Leszczynsk
(
Springer
,
New York
,
2008
), Chap. 4, pp.
93
124
;
M.
Ehara
,
J.
Hasegawa
, and
H.
Nakatsuji
, in
Theory and Applications of Computational Chemistry: The First 40 Years, A Volume of Technical and Historical Perspectives
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
Oxford
,
2005
), pp.
1099
1141
.
8.
P.
Poolmee
,
M.
Ehara
,
S.
Hannongbua
, and
H.
Nakatsuji
,
Polymer
46
,
6474
(
2005
);
B.
Saha
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Phys. Chem. A
111
,
5473
(
2007
);
[PubMed]
M.
Promkatkaew
,
S.
Suramitr
,
T. K.
Karpkird
,
S.
Namuangruk
,
M.
Ehara
, and
S.
Hannongbua
,
J. Chem. Phys.
131
,
224306
(
2009
);
[PubMed]
R.
Fukuda
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
133
,
144316
(
2010
).
[PubMed]
9.
A. K.
Das
,
J.
Hasegawa
,
T.
Miyahara
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Comput. Chem.
24
,
1421
(
2003
);
[PubMed]
K.
Fujimoto
,
J.
Hasegawa
,
S.
Hayashi
,
S.
Kato
, and
H.
Nakatsuji
,
Chem. Phys. Lett.
414
,
239
(
2005
);
N.
Nakatani
,
J.
Hasegawa
, and
H.
Nakatsuji
,
J. Am. Chem. Soc.
129
,
8756
(
2007
).
[PubMed]
10.
R.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
11.
J.
Jortner
,
Mol. Phys.
5
,
257
(
1962
).
12.
J.
Ulstrup
,
Charge TransferPprocesses in Condensed Media
(
Springer-Verlag
,
Berlin,
1979
).
13.
G.
Van Der Zwan
and
J. T.
Hynes
,
J. Phys. Chem.
89
,
4181
(
1985
).
14.
H. J.
Kim
and
J. T.
Hynes
,
J. Chem. Phys.
93
,
5194
(
1990
);
H. J.
Kim
and
J. T.
Hynes
,
J. Chem. Phys.
93
,
5211
(
1990
).
15.
M. D.
Newton
and
H. L.
Friedman
,
J. Chem. Phys.
88
,
4460
(
1988
).
16.
M. V.
Basilevsky
and
G. E.
Chudionov
,
Chem. Phys.
157
,
327
(
1991
);
M. V.
Basilevsky
,
G. E.
Chudionov
, and
D. V.
Napolov
,
J. Phys. Chem.
97
,
3270
(
1993
).
17.
D. G.
Truhlar
,
G. K.
Schenter
, and
B. C.
Garrett
,
J. Chem. Phys.
98
,
5756
(
1993
);
C.
Cramer
and
D. G.
Truhlar
,
Chem. Rev.
99
,
2161
(
1999
).
[PubMed]
18.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases
(
Oxford University Press
,
Oxford
,
2006
).
19.
R.
Bonaccorsi
,
R.
Cimiraglia
, and
J.
Tomasi
,
J. Comput. Chem.
4
,
567
(
1983
);
R.
Bonaccorsi
,
R.
Cimiraglia
, and
J.
Tomasi
,
Chem. Phys. Lett.
99
,
77
(
1983
).
20.
M. A.
Aguilar
,
F. J.
Olivares del Valle
, and
J.
Tomasi
,
J. Chem. Phys.
98
,
7375
(
1993
).
21.
R.
Cammi
and
J.
Tomasi
,
Int. J. Quantum Chem., Symp.
29
,
465
(
1995
).
22.
K. V.
Mikkelsen
,
A.
Cesar
,
H.
Ågren
, and
H. J. Aa.
Jensen
,
J. Chem. Phys.
103
,
9010
(
1995
).
23.
B.
Mennucci
,
R.
Cammi
, and
J.
Tomasi
,
J. Chem. Phys.
109
,
2798
(
1998
).
24.
O.
Christiansen
and
K. V.
Mikkelsen
,
J. Chem. Phys.
110
,
8348
(
1999
).
25.
M.
Cossi
and
V.
Barone
,
J. Phys. Chem. A
104
,
10614
(
2000
);
M.
Cossi
and
V.
Barone
,
J. Chem. Phys.
115
,
4708
(
2001
).
26.
R.
Cammi
,
L.
Frediani
,
B.
Mennucci
,
J.
Tomasi
,
K.
Ruud
, and
K. V.
Mikkelsen
,
J. Chem. Phys.
117
,
13
(
2002
).
27.
R.
Cammi
,
S.
Corni
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
122
,
104513
(
2005
).
28.
S.
Corni
,
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
123
,
134512
(
2005
).
30.
M.
Caricato
,
B.
Mennucci
,
J.
Tomasi
,
F.
Ingrosso
,
R.
Cammi
,
S.
Corni
, and
G.
Scalmani
,
J. Chem. Phys.
124
,
124520
(
2006
).
31.
C.
Cappelli
,
S.
Corni
,
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
113
,
11270
(
2000
).
32.
The optical dielectric constant is related by the Maxwell relation to the refractive index, n, of the bulk solvent as ɛ = n2.
33.
E.
Cances
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
3032
(
1997
);
E.
Cances
and
B.
Mennucci
,
J. Math. Chem.
23
,
309
(
1998
);
B.
Mennucci
,
E.
Cances
, and
J.
Tomasi
,
J. Phys. Chem. B
101
,
10506
(
1997
).
34.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
35.
R.
Fukuda
and
H.
Nakatsuji
,
J. Chem. Phys.
128
,
094105
(
2008
).
36.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
, et al,
GAUSSIAN 09
, Revision B.01
Gaussian, Inc.
,
Wallingford, CT
,
2010
.
37.
R. S.
Becker
,
K.
Inuzuka
, and
J.
King
,
J. Chem. Phys.
52
,
5164
(
1970
).
38.
K.
Aidas
,
A.
Møgelhøj
,
E. J. K.
Nilsson
,
M. S.
Johnson
,
K. V.
Mikkelsen
,
O.
Christiansen
,
P.
Söderhjelm
, and
J.
Kongsted
,
J. Chem. Phys.
128
,
194503
(
2008
).
39.
G.
Mackinney
and
O.
Temmer
,
J. Am. Chem. Soc.
70
,
3586
(
1948
).
40.
K.
Inuzuka
,
Bull. Chem. Soc. Jpn.
33
,
678
(
1960
).
41.
A. F.
Moskvin
,
O. P.
Yablonskii
, and
L. F.
Bondar
,
Theor. Exp. Chem.
2
,
469
(
1966
).
42.
A. M. D.
Lee
,
J. D.
Coe
,
S.
Ullrich
,
M.-L.
Ho
,
S.-J.
Lee
,
B.-M.
Cheng
,
M. Z.
Zgierski
,
I.-C.
Chen
,
T. J.
Martínez
, and
A.
Stolow
,
J. Phys. Chem. A
111
,
11948
(
2007
).
43.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
44.
A. D.
Walsh
,
Trans. Faraday Soc.
41
,
498
(
1945
).
45.
J. M.
Hollas
,
Spectrochim. Acta.
19
,
1425
(
1963
).
46.
K.
Sneskov
,
E.
Matito
,
J.
Kongsted
, and
O.
Christiansen
,
J. Chem. Theory Comput.
6
,
839
(
2010
).
47.
S. W.
Staley
and
T. D.
Norden
,
J. Am. Chem. Soc.
106
,
3699
(
1984
).
48.
R. P.
Johnson
and
M. W.
Schmidt
,
J. Am. Chem. Soc.
103
,
3244
(
1981
).
You do not currently have access to this content.