The transition from single-file diffusion to Fickian diffusion in narrow cylindrical pores is investigated for systems of rigid single-walled armchair carbon nanotubes, solvated with binary mixtures of Lennard-Jones fluids (Ar/Ne, Ar/Kr, and Ar/Xe). A range of effects is examined including the mixture concentration, the size ratio of the two components, and the nanotube diameter. The transition from single-file to Fickian diffusion in varying carbon nanotube diameters is analyzed in terms of the Fickian self-diffusivity and the single-file mobility of the mixture components. It is found that the single-file to Fickian carbon nanotube transition diameter is a unique property of the individual molecule’s diameter and remains unchanged regardless of the mixture composition. In applications of binary mixtures, each component may crossover from single-file to Fickian diffusion in a different carbon nanotube diameter, giving rise to bimodal diffusion in some nanotubes. This transition allows for one species to diffuse in single-file while the other diffuses by a Fickian mechanism, yielding orders of magnitude difference between the self-diffusional rates of the two molecules. This phenomenon might be further extended to alter the diffusional motion of molecules in nanoporous materials.

1.
I.
Skoulidas
,
D. M.
Ackerman
,
J. K.
Johnson
, and
D. S.
Sholl
,
Phys. Rev. Lett.
89
,
185901
(
2002
).
2.
D. M.
Ackerman
,
A. I.
Skoulidas
,
D. S.
Sholl
, and
J. K.
Johnson
,
Mol. Simul.
29
,
677
(
2003
).
3.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyt
,
Nature (London)
414
,
188
(
2001
).
4.
L.
Sun
and
R. M.
Crooks
,
J. Am. Chem. Soc.
122
,
12340
(
2000
).
5.
A.
Wongkoblap
,
D. D.
Do
, and
K.
Wang
,
J. Colloid Interface Sci.
331
,
65
(
2009
).
6.
S.
Jakobtorweihen
and
F. J.
Keil
,
Mol. Simul.
35
,
90
(
2009
).
7.
J. C.
Palmer
,
J. K.
Brennan
,
M. M.
Hurley
,
A.
Balboa
, and
K. E.
Gubbins
,
Carbon
47
,
2904
(
2009
).
8.
J. C.
Palmer
,
A.
Liobet
,
S. -H.
Yeon
,
J. E.
Fischer
,
Y.
Shi
,
Y.
Gogotsi
, and
K. E.
Gubbins
,
Carbon
48
,
1116
(
2010
).
9.
T.
Roussel
,
A.
Didion
,
R. J. M.
Pellenq
,
R.
Gadiou
,
C.
Bichara
, and
C.
Vix-Guterl
,
J. Phys. Chem. C
111
,
15863
(
2007
).
10.
J. D.
Moore
,
J. C.
Palmer
,
Y. -C.
Liu
,
T. J.
Roussel
,
J. K.
Brennan
, and
K. E.
Gubbins
,
Appl. Surf. Sci.
256
,
5131
(
2010
).
12.
S.
Yashonath
and
P.
Santikary
,
J. Phys. Chem.
98
,
6368
(
1994
).
13.
D. G.
Levitt
,
Phys. Rev. A
8
,
3050
(
1973
).
14.
V.
Gupta
,
S. S.
Nivarthi
,
A. V.
McCormick
, and
H. T.
Davis
,
Chem. Phys. Lett.
247
,
596
(
1995
).
15.
V.
Kukla
,
J.
Kornatowski
,
D.
Demuth
,
I.
Girnus
,
H.
Pfeifer
,
L. V. C.
Rees
,
S.
Schunk
,
K. K.
Unger
, and
J.
Kärger
,
Science
272
,
702
(
1996
).
16.
K.
Hahn
,
J.
Kärger
, and
V.
Kukla
,
Phys. Rev. Lett.
76
,
2762
(
1996
).
17.
Q. -H.
Wei
,
C.
Bechinger
, and
P.
Leiderer
,
Science
287
,
625
(
2000
).
18.
C.
Lutz
,
M.
Kollman
, and
C.
Bechinger
,
Phys. Rev. Lett.
93
,
026001
(
2004
).
19.
B.
Lin
,
M.
Merom
,
B.
Cui
,
S. A.
Rice
, and
H.
Diamant
,
Phys. Rev. Lett.
94
,
216001
(
2005
).
20.
A.
Das
,
S.
Jayanthi
,
H. S. M. V.
Deepak
,
K. V.
Ramanathan
,
A.
Kumar
,
C.
Dasgupta
and
A. K.
Sood
,
ACS Nano
4
,
1687
(
2010
).
21.
S. S.
Nivarthi
,
A. V.
Mccormick
, and
H. T.
Davis
,
Chem. Phys. Lett.
229
,
297
(
1994
).
22.
H.
Jobic
,
K.
Hahn
,
J.
Kärger
,
M.
Bée
,
A.
Tuel
,
M.
Noack
,
I.
Girnus
, and
G. J.
Kearley
,
J. Phys. Chem. B
101
,
5834
(
1997
).
23.
B. U.
Felderhof
,
J. Chem. Phys.
131
,
064504
(
2009
).
24.
J. K.
Percus
,
Phys. Rev. A
9
,
557
(
1974
).
25.
Y. -C.
Liu
,
J. D.
Moore
,
Q.
Chen
,
T. J.
Roussel
,
Q.
Wang
, and
K. E.
Gubbins
, in
Proceedings of Diffusion Fundamentals III
, edited by
C.
Chmelik
,
N.
Kannellopoulos
,
J.
Kärger
, and
D.
Theodorou
(
Leipziger Universitätsverlag
,
Athens
,
2009
), pp.
164
182
.
26.
K. K.
Mon
and
J. K.
Percus
,
J. Chem. Phys.
112
,
3457
(
2000
).
27.
K. K.
Mon
and
J. K.
Percus
,
J. Chem. Phys.
117
,
2289
(
2002
).
28.
K. K.
Mon
and
J. K.
Percus
,
J. Chem. Phys.
119
,
3343
(
2003
).
29.
K.
Hahn
and
J.
Kärger
,
J. Phys. Chem. B
102
,
5766
(
1998
).
30.
C. D.
Ball
,
N. D.
MacWilliam
,
J. K.
Percus
, and
R. K.
Bowles
,
J. Chem. Phys.
130
,
054504
(
2009
).
31.
D. S.
Sholl
and
K. A.
Fichthorn
,
J. Chem. Phys.
107
,
4384
(
1997
).
32.
W. A.
Steele
,
The Interaction of Gases With Solid Surfaces
(
Pergamon
,
Oxford
,
1974
).
33.
I.
Skoulidas
and
D. S.
Sholl
,
J. Phys. Chem. B
106
,
5058
(
2002
).
34.
N.
Chennamsetty
,
H.
Bock
, and
K. E.
Gubbins
,
Mol. Phys.
103
,
3185
(
2005
).
35.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kale
, and
K. J.
Schulten
,
J. Comput. Chem.
26
,
1781
(
2005
).
36.
Y. -C.
Liu
,
J. D.
Moore
,
T. J.
Roussel
, and
K. E.
Gubbins
,
Phys. Chem. Chem. Phys.
12
,
6632
(
2010
).
37.
K. E.
Gubbins
and
J. D.
Moore
,
Ind. Eng. Chem. Res.
49
,
3026
(
2010
).
38.
S. K.
Bhatia
,
H. B.
Chen
, and
D. S.
Sholl
,
Mol. Simul.
31
,
643
(
2005
).
39.
K.
Hahn
and
J.
Kärger
,
J. Phys. Chem.
100
,
316
(
1996
).
40.
M.
Bazarnik
,
M.
Cegiel
,
P.
Biskupski
,
M.
Jazdzewska
,
S.
Mielcarek
,
M.
Sliwinska-Bartkowiak
, and
R.
Czajka
,
Cent. Eur. J. Phys.
7
,
295
(
2009
).
You do not currently have access to this content.