Photoelectron spectroscopy with synchrotron radiation (SRPES), temperature programmed desorption (TPD), low energy electron diffraction (LEED), and ion-scattering spectroscopy (ISS) were used in order to study the MgCl2/Ti(0001) interface. A clear hexagonal LEED pattern confirmed the presence of a quite large grain of Ti(0001) on the substrate while no new superstructure was formed after deposition of MgCl2 either at room or at elevated temperatures. A series of high resolution spectra after step by step MgCl2 deposition and gradual annealing indicated strong interaction between MgCl2 and the substrate while ISS measurements showed that there is no migration of Ti atoms into the deposit layers. Additional quantities of deposited MgCl2 grew stoichimetrically on top of the chemically active interface. Annealing at 350°C caused clustering of the MgCl2 multilayer and TPD results showed that they desorbed stoichimetrically at temperatures between 360 and 380°C. The interfacial TiClxMgy species dissociated by the disruption of the Cl–Mg bonds at temperatures higher than 400°C and metallic Mg evaporated. The Cl atoms remained attached on the Ti surface but they did not form any ordered structure even after annealing at 730°C. The present results indicate the occurrence of charge transfer at the Ti/MgCl2 interface through the Cl ligands and provide valuable information for catalyst design.

1.
P.
Sobota
and
S.
Szafert
,
Inorg. Chem.
35
,
1778
(
1996
).
2.
A. G.
Potapov
,
V. V.
Kriventson
,
D. I.
Kochubey
,
G. D.
Bukatov
, and
V. A.
Zakharov
,
Macromol. Chem. Phys.
198
,
3477
(
1997
).
3.
T.
Usami
,
S.
Takayama
, and
M.
Yokayama
,
J. Polym. Sci. Polym. Lett.
23
,
427
(
1985
).
4.
G.
Vlaic
,
J. C. J.
Bart
,
W.
Cavigiolo
,
A.
Michalowicz
,
A.
Bianconi
,
L.
Incoccia
, and
S.
Stipcich
,
In EXAFS and Near Edge Structure
(
Springer
,
Berlin
,
1983
).
5.
J.
Reed
,
P.
Eisenberger
, and
J.
Hastings
,
Inorg. Chem.
17
,
481
(
1978
).
6.
L.
Aleandri
,
V.
Fraaije
,
G.
Fink
,
D.
Jones
, and
J.
Rozie`re
,
Macromol. Rapid Commun.
15
,
453
(
1994
).
7.
P. J. V.
Jones
,
R. J.
Oldman
,
W.
Kaminsky
, and
H.
Sinn
,
Transition Metals and Organometallics as Catalysts for Olefin Polymerization
(
Springer-Verlag
,
Berlin
,
1988
).
8.
A. A.
da Silva Filho
,
M.
do Carmo Martins Alves
, and
J.
Henriqueimnoch dos Santos
,
J. Appl. Polym. Sci.
109
,
1675
(
2008
).
9.
M.
Furuta
,
J. Polym. Sci. Polym. Phys. Ed.
19
,
135
(
1981
).
10.
K.
Hasebe
,
H.
Mori
, and
M.
Terano
,
J. Mol. Catal. Chem.
124
,
L1
(
1997
).
11.
H.
Mori
,
K.
Hasebe
, and
M.
Terano
,
J. Mol. Catal. Chem.
140
,
165
(
1999
).
12.
H.
Mori
,
K.
Hasebe
, and
M.
Terano
,
Polymer
40
,
1389
(
1999
).
13.
M. M.
de Camargo Forte
,
F. V.
Da Cunha
, and
J. H. Z.
Dos Santos
,
J. Mol. Catal. Chem.
175
,
91
(
2001
).
14.
V. K.
Kaushik
,
V. K.
Gupta
, and
D. G.
Naik
,
Appl. Surf. Sci.
253
,
753
(
2006
).
15.
E.
Magni
and
G. A.
Somorjai
,
J. Phys. Chem.
102
,
8788
(
1998
).
16.
E.
Magni
and
G. A.
Somorjai
,
Surf. Sci.
824
,
377
(
1997
).
17.
A.
Siokou
and
S.
Ntais
,
Surf. Sci.
540
,
379
(
2003
).
18.
S.
Ntais
and
A.
Siokou
,
J. Mol. Catal. Chem.
245
,
87
(
2006
).
19.
S.
Ntais
and
A.
Siokou
,
Surf. Sci.
600
,
4216
(
2006
).
20.
A.
Andoni
,
J. C.
Chadwick
,
S.
Milani
,
H. (J. W.)
Niemantsverdriet
, and
P. C.
Thüne
,
J. Catal.
247
,
129
(
2007
).
21.
S. H.
Kim
and
G. A.
Somorjai
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
15289
(
2006
).
22.
A.
Andoni
,
J. C.
Chadwick
,
H. (J. W.)
Niemantsverdriet
, and
P. C.
Thüne
,
Catal. Lett.
130
,
278
(
2009
).
23.
S.
Karakalos
,
A.
Siokou
,
V.
Dracopoulos
,
F.
Sutara
,
T.
Skala
,
M.
Skoda
,
S.
Ladas
,
K.
Prince
,
V.
Matolin
, and
V.
Chab
,
J. Chem. Phys.
128
,
104705
(
2008
).
24.
S.
Karakalos
,
A.
Siokou
, and
S.
Ladas
,
Appl. Surf. Sci.
255
,
8941
(
2009
).
25.
K.
Soga
,
R.
Ohnishi
, and
Y.
Doi
,
Polym. Bull.
9
,
299
(
1983
).
26.
I.
Kim
,
J. H.
Kim
, and
S. I.
Woo
,
J. Appl. Polym. Sci.
39
,
837
(
1990
).
27.
D.
Briggs
and
M. P.
Seah
,
Practical Surf Anal.
(
Wiley
,
New York
,
1990
).
28.
D.
Briggs
and
G. P.
Ceasar
,
Surf. Int. Anal.
1
,
1
(
1979
).
29.
D. H.
Fairbrother
,
J. G.
Roberts
, and
G. A.
Somorjai
,
Surf. Sci.
399
,
109
(
1998
).
30.
J. G.
Roberts
,
M.
Gierer
,
D. H.
Fairbrother
,
M. A.
Van Hove
, and
G. A.
Somorjai
,
Surf. Sci.
399
,
123
(
1998
).
32.
S. H.
Kim
and
G. E.
Somorjai
,
J. Phys. Chem. B
105
,
3922
(
2001
).
33.
E.
Magni
and
G. E.
Somorjai
,
Surf. Sci.
341
,
L1078
(
1995
).
34.
Y.
Fukuda
,
F.
Honda
, and
J. W.
Rabalais
,
Surf. Sci.
91
,
165
(
1980
).
35.
P. M.
Hansen
,
Constitution of Binary Alloys
(
McGraw-Hill
,
New York
,
1958
).
36.
G.
Lu
,
P. G.
Partridge
,
J. W.
Steeds
, and
C. M.
Ward-Close
,
J. Mater. Sci.
31
,
867
(
1996
).
37.
C.
Martinsky
and
C.
Minot
,
Surf. Sci.
467
,
152
(
2000
).
38.
R. R.
Reddy
,
A. S. R.
Reddy
, and
V. K.
Reddy
,
Can. J. Chem.
63
,
3174
(
1985
).
39.
E. A.
Colbourn
,
P. A.
Cox
,
B.
Carruthers
, and
P. J. V.
Jones
,
J. Mater. Chem.
4
,
805
(
1994
).
40.
O.
Kubaschewski
and
C. B.
Alcock
, in
Metallurgical Thermo-chemistry
(5th edition),
Material Science Technology
, Vol.
24
, (
Pergamon
,
New York
197
(
1979
).
41.
S. H.
Kim
and
G. A.
Somorjai
,
J. Phys. Chem. B
104
,
5519
(
2000
).
42.
P. R.
Watson
and
S. M.
Mockler
,
J. Phys. Chem.
91
,
5705
(
1987
).
43.
C. S.
Ri
and
P. R.
Watson
,
Solid State Commun.
81
,
541
(
1992
).
44.
T.
Suzuki
and
R.
Souda
,
Phys. Rev. B
62
,
8306
(
2000
).
45.
N.
Tsud
,
F.
Sutara
,
I.
Matolinova
,
K.
Veltruska
,
V.
Dudr
,
V.
Chab
,
K. C.
Prince
, and
V.
Matolin
,
Appl. Surf. Sci.
252
,
5428
(
2006
).
46.
S.
Kinno
and
R.
Onaka
,
J. Phys. Soc. Jpn.
49
,
1379
(
1980
).
47.
D. M.
Hanson
,
R.
Stockbauer
, and
T. E.
Madey
,
Phys. Rev. B
24
,
5513
(
1981
).
48.
A.
Sagara
,
K.
Akaishi
,
K.
Kamada
, and
A.
Miyahara
,
J. Nucl. Mater.
93–94
,
847
(
1980
).
49.
S.
Ntais
,
V.
Dracopoulos
, and
A.
Siokou
,
J. Mol. Catal. Chem.
220
,
199
(
2004
).
You do not currently have access to this content.