We have investigated the absorption of 0.9–1.4 nm silicon carbide nanoparticles (SiC NPs) by time-dependent density functional calculations, focusing on the effect of various oxygen adsorbates of the surface. We have found that SiO and CO single bonds result in relatively large optical gaps in the ultraviolet region while SiO and CO double bonds will dramatically lower the optical gap into the visible blue and red regions, respectively. Our findings can help interpret recent experiments on colloidal SiC NPs and their utilization in biological applications.

1.
P.
Mélinon
,
B.
Masenelli
,
F.
Tournus
, and
A.
Perez
,
Nature Mater.
6
,
479
(
2007
).
2.
X. L.
Wu
,
J. Y.
Fan
,
T.
Qiu
,
X.
Yang
,
G. G.
Siu
, and
P. K.
Chu
,
Phys. Rev. Lett.
94
,
026102
(
2005
).
3.
D. H.
Feng
,
Z. Z.
Xu
,
T. Q.
Jia
,
X. X.
Li
, and
S. Q.
Gong
,
Phys. Rev. B
68
,
035334
(
2003
).
4.
A. M.
Rossi
,
T. E.
Murphy
, and
V.
Reipa
,
Appl. Phys. Lett.
92
,
253112
(
2008
).
5.
The band gap of cubic 3C, the hexagonal 6H and 4H-SiC is 2.4, 2.9, and 3.2 eV, respectively.
6.
P.
González
,
J.
Serra
,
S.
Liste
,
S.
Chiussi
,
B.
León
,
M.
Pérez-Amor
,
J.
Martínez-Fernández
,
A. R.
de Arellano-López
, and
F. M.
Varela-Feria
,
Biomaterials
24
,
4827
(
2003
).
7.
J.
Botsoa
,
V.
Lysenko
,
A.
Géloën
,
O.
Marty
,
J. M.
Bluet
, and
G.
Guillot
,
Appl. Phys. Lett.
92
,
173902
(
2008
).
8.
J.
Fan
,
H.
Li
,
J.
Jiang
,
L. K. Y.
So
,
Y. W.
Lam
, and
P. K.
Chu
,
Small
4
,
1058
(
2008
).
9.
A.
Puzder
,
A. J.
Williamson
,
J. C.
Grossman
, and
G.
Galli
,
Phys. Rev. Lett.
88
,
097401
(
2002
).
10.
M. V.
Wolkin
,
J.
Jorne
,
P. M.
Fauchet
,
G.
Allan
, and
C.
Delerue
,
Phys. Rev. Lett.
82
,
197
(
1999
).
11.
Y.
Zakharko
,
J.
Botsoa
,
S.
Alekseev
,
V.
Lysenko
,
J. -M.
Bluet
,
O.
Marty
,
V. A.
Skryshevsky
, and
G.
Guillot
,
J. Appl. Phys.
107
,
013503
(
2010
).
12.
X. L.
Wu
,
S. J.
Xiong
,
J.
Zhu
,
J.
Wang
,
J. C.
Shen
, and
P. K.
Chu
,
Nano Lett.
9
,
4053
(
2009
).
13.
J.
Wang
,
S. J.
Xiong
,
X. L.
Wu
,
T. H.
Li
, and
P. K.
Chu
,
Nano Lett.
10
,
1466
(
2010
).
14.
G.
Cicero
,
G.
Galli
, and
A.
Catellani
,
J. Phys. Chem. B
108
,
16518
(
2004
).
15.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
16.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
17.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
18.
In our calculations we employed a confinement energy shift of 0.02 Ry for the atomic orbitals and a plane wave equivalent cutoff of 180 Ry for the radial grid. We used the following cutoff radii for our pseudopotentials: 1.25, 1.25, 1.39, and 1.89 a.u. for H, C, O, and Si atoms, respectively.
19.
For this purpose the PWSCF code (Ref. 35) was applied with using standard ultrasoft pseudopotentials (Si.pbe-n-van.UPF, H/O/C.pbe-rrkjus. UPF files for Si/H/O/C atoms, respectively, all these pseudopotentials are available at http://www.quantum-espresso.org/pseudo.php) and 40/400 Ry plane wave/charge density cutoff.
20.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
21.
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
).
22.
M.
Vörös
and
A.
Gali
,
Phys. Rev. B
80
,
161411
(
2009
).
23.
A.
Gali
,
B.
Aradi
,
D.
Heringer
,
W.
Choyke
,
R.
Devaty
, and
S.
Bai
,
Appl. Phys. Lett.
80
,
237
(
2002
).
24.
K.
Burke
,
J.
Werschnik
, and
E. K. U.
Gross
,
J. Chem. Phys.
123
,
062206
(
2005
).
25.
I.
Vasiliev
,
J. R.
Chelikowsky
, and
R. M.
Martin
,
Phys. Rev. B
65
,
121302
(R) (
2002
).
26.
We utilized the plane-wave code VASP (Ref. 36) with a cutoff of 420 eV and the PAW-method (Ref. 37) with standard PAW projectors at the SIESTA geometries to get the charge density and the freely available Bader charge analysis program (Ref. 38) to obtain Bader charges (Ref. 39).
27.
See http://en.wikipedia.org/wiki/File:Colors_in_eV.svg for determining the approximate color.
28.
D.
Prendergast
,
J.
Grossman
,
A.
Williamson
,
J.
Fattebert
, and
G.
Galli
,
J. Am. Chem. Soc.
126
,
13827
(
2004
).
29.
R. J.
Eyre
,
J. P.
Goss
,
R. M.
MacLeod
, and
P. R.
Briddon
,
Phys. Chem. Chem. Phys.
10
,
4495
(
2008
).
30.
S.
Seager
and
M.
Slabaugh
,
Chemistry for Today: General, Organic, and Biochemistry
(
Brooks/Cole
,
Pacific Grove, CA
,
1999
).
31.
M.
Vörös
,
P.
Deák
,
T.
Frauenheim
, and
A.
Gali
,
Appl. Phys. Lett.
96
,
051909
(
2010
).
32.
D.
Chen
,
Z. M.
Liao
,
L.
Wang
,
H. Z.
Wang
,
F.
Zhao
,
W. Y.
Cheung
, and
S. P.
Wong
,
Opt. Mater. (Amsterdam, Neth.)
23
,
65
(
2003
).
33.
Y. P.
Guo
,
J. C.
Zheng
,
A. T. S.
Wee
,
C. H. A.
Huan
,
K.
Lib
,
J. S.
Pan
,
Z. C.
Feng
, and
S. J.
Chua
,
Chem. Phys. Lett.
339
,
319
(
2001
).
34.
Z.
Makkai
,
B.
Pécz
,
I.
Bársony
,
G.
Vida
,
A.
Pongrácz
,
K. V.
Josepovits
, and
P.
Deák
,
Appl. Phys. Lett.
86
,
253109
(
2005
).
35.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
36.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
37.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
38.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
,
J. Phys.: Condens. Matter
21
,
084204
(
2009
).
39.
R. F. W.
Bader
,
Atoms in Molecules-A Quantum Theory
(
Oxford University Press
,
London
,
1990
).
You do not currently have access to this content.