The harvesting of solar energy and its conversion to chemical energy is essential for all forms of life. The primary photon absorption, transport, and charge separation events, which trigger a chain of chemical reactions, take place in membrane-bound photosynthetic complexes. Whether quantum effects, stemming from entanglement of chromophores, persist in the energy transport at room temperature, despite the rapid decoherence effects caused by environment fluctuations, is under current active debate. If confirmed, these may explain the high efficiency of light harvesting and open up numerous applications to quantum computing and information processing. We present simulations of the photosynthetic reaction center of photosystem II that clearly establish oscillatory energy transport at room temperature originating from interference of quantum pathways. These signatures of quantum transport may be observed by two dimensional coherent optical spectroscopy.

1.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
Wiley-Blackwell
,
New York
,
2002
).
2.
G. R.
Fleming
and
R.
van Grondelle
,
Curr. Opin. Struct. Biol.
7
,
738
(
1997
).
3.
X.
Hu
,
T.
Ritz
,
A.
Damjanovic
,
F.
Autenrieth
, and
K.
Schulten
,
Q. Rev. Biophys.
35
,
1
(
2002
).
4.
H.
van Amerongen
,
L.
Valkunas
, and
R.
van Grondelle
,
Photosynthetic Excitons
(
World Scientific
,
Singapore
,
2000
).
5.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. K.
Ahn
,
T.
Mančal
,
Y. C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
(
2007
).
6.
G.
Panitchayangkoon
,
D.
Hayes
,
K. A.
Fransted
,
J. R.
Caram
,
E.
Harel
,
J.
Wen
,
R. E.
Blankenship
, and
G. S.
Engel
, “
Long-lived quantum coherence in photosynthetic complexes at physiological temperature
,” e-print arXiv:1001.5108,
2010
.
7.
E.
Collini
and
G. D.
Scholes
,
Science
323
,
369
(
2009
).
8.
M.
Mohseni
,
P.
Rebentrost
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
129
,
174106
(
2008
).
9.
F.
Caruso
,
A. W.
Chin
,
A.
Datta
,
S. F.
Huelga
, and
M.
Plenio
,
J. Chem. Phys.
131
,
105106
(
2009
).
10.
P.
Rebentrost
,
M.
Mohseni
, and
A. A.
Guzik
,
J. Phys. Chem. B
113
,
9942
(
2009
).
11.
T. R.
Calhoun
,
N. S.
Ginsberg
,
G. S.
Schlau-Cohen
,
Y. -C.
Cheng
,
M.
Ballottari
,
R.
Bassi
, and
G. R.
Fleming
,
J. Phys. Chem. B
113
,
16291
(
2009
).
12.
N. S.
Ginsberg
,
I. C.
Cheng
, and
G. R.
Fleming
,
Acc. Chem. Res.
42
,
1352
(
2009
).
14.
L.
Chen
,
R.
Zheng
,
Q.
Shi
, and
Y.
Yan
,
J. Chem. Phys.
132
,
024505
(
2010
).
15.
B.
Palmieri
,
D.
Abramavicius
, and
S.
Mukamel
,
J. Chem. Phys.
130
,
204512
(
2009
).
16.
D. A.
Lidar
,
Z.
Bihary
, and
K. B.
Whaley
,
Chem. Phys.
268
,
35
(
2001
).
17.
Irreversible Quantum Dynamics
, edited by
F.
Benatti
and
R.
Floreanini
(
Springer
,
New York
,
2003
).
18.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
, 3rd ed. (
Elsevier
,
North Holland
,
2007
).
19.
D.
Abramavicius
,
B.
Palmieri
,
D. V.
Voronine
,
F.
Šanda
, and
S.
Mukamel
,
Chem. Rev. (Washington, D.C.)
109
,
2350
(
2009
).
20.
V. I.
Novoderezhkin
,
E. G.
Andrizhiyevskaya
,
J. P.
Dekker
, and
R.
van Grondelle
,
Biophys. J.
89
,
1464
(
2005
).
21.
E. J. G.
Peterman
,
H.
van Amerongen
,
R.
van Grondelle
, and
J. P.
Dekker
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
6128
(
1998
).
22.
V.
Chernyak
,
T.
Minami
, and
S.
Mukamel
,
J. Phys. Chem.
112
,
7953
(
2000
).
23.
V.
Chernyak
,
W. M.
Zhang
, and
S.
Mukamel
,
J. Chem. Phys.
109
,
9587
(
1998
).
24.
A.
Guskov
,
J.
Kern
, and
A.
Gabdulkhakov
,
Nat. Struct. Mol. Biol.
16
,
334
(
2009
).
25.
N.
Kamiya
and
J. -R.
Shen
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
98
(
2003
).
26.
G.
Raszewski
,
W.
Saenger
, and
T.
Renger
,
Biophys. J.
88
,
986
(
2005
).
27.
G.
Raszewski
,
B. A.
Diner
,
E.
Schlodder
, and
T.
Renger
,
Biophys. J.
95
,
105
(
2008
).
28.
V.
Novoderezhkin
,
J.
Dekker
,
H.
van Amerongen
, and
R.
van Grondelle
,
Biophys. J.
93
,
1293
(
2007
).
29.
P. F.
Tian
,
D.
Keusters
,
Y.
Suzaki
, and
W. S.
Warren
,
Science
300
,
1553
(
2003
).
30.
T.
Brixner
,
I. V.
Stiopkin
, and
G. R.
Fleming
,
Opt. Lett.
29
,
884
(
2004
).
31.
S.
Mukamel
,
Y.
Tanimura
, and
P.
Hamm
, in Coherent Multidimensional Optical Spectroscopy, special issue of
Acc. Chem. Res.
42
,
1207
(
2009
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.3458824 for high-resolution (each 10 fs) evolution of the 2D spectra between t2=0 and 1 ps for CT and QT simulations (check README.TXT file for instructions).
33.
F.
Milota
,
J.
Sperling
,
A.
Nemeth
,
D.
Abramavicius
,
S.
Mukamel
, and
H. F.
Kauffmann
,
J. Chem. Phys.
131
,
054510
(
2009
).
34.
D.
Abramavicius
,
L.
Valkunas
, and
S.
Mukamel
,
Europhys. Lett.
80
,
17005
(
2007
).

Supplementary Material

You do not currently have access to this content.