Using molecular dynamics (MD) simulations, the spectroscopy and dynamics of malonaldehyde is investigated. To this end, the recently proposed molecular mechanics with proton transfer (MMPT) potential is generalized to nonlinear hydrogen bonds. The calculated properties for malonaldehyde in both gas and condensed phases, including equilibrium geometries, infrared spectra, tunneling splittings, and hydrogen transfer rates, compare well with previous experimental and computational works. In particular, by using a harmonic bath averaged (HBA) Hamiltonian, which is based on a reaction path Hamiltonian, it is possible to estimate the tunneling splitting in an efficient manner. It is found that a zero point corrected barrier of 6.7 kcal/mol and effective masses of 1.234 (i.e., 23.4% larger than the mass of a physical H-atom) and 1.117 (for the physical D-atom) are consistent with the measured splittings of 21.6 and 2.9cm1, respectively. The HBA Hamiltonian also yields a pair of hydrogen transfer fundamentals at 1573 and 1267cm1, similar to results obtained with a reaction surface Hamiltonian on a MP2/6-31G potential energy surface. This amounts to a substantial redshift of more than 1000cm1 which can be rationalized by comparison with weakly (HCO+: rare gas) and strongly (H2OH+OH2) proton-bound systems. Hydrogen transfer rates in vacuum and water were determined from the validated MMPT potential and it is found that the solvent enhances the rate by a factor of 5 at 300 K. The rates of 2.4/ns and 10/ns are commensurate with previous density functional tight binding ab initio MD studies.

1.
C. J. T.
de Grotthuss
,
Ann. Chim.
LVIII
,
54
(
1806
).
2.
Hydrogen-Transfer Reactions
, edited by
J. T.
Hynes
,
J. P.
Klinman
,
H. -H.
Limbach
, and
R. L.
Schowen
(
Wiley-VCH
,
Weinheim
,
2007
).
3.
K. R.
Asmis
,
N. L.
Pivonka
,
G.
Santambrogio
,
M.
Brümmer
,
C.
Kaposta
,
D. M.
Neumark
, and
L.
Wöste
,
Science
299
,
1375
(
2003
).
4.
E.
Diken
,
J.
Headrick
,
J.
Roscioli
,
J.
Bopp
,
M. A.
Johnson
, and
A.
McCoy
,
J. Phys. Chem. A
109
,
1487
(
2005
).
5.
K. R.
Asmis
,
Y.
Yang
,
G.
Santambrogio
,
M.
Brümmer
,
J. R.
Roscioli
,
L. R.
McCunn
,
M. A.
Johnson
, and
O.
Kühn
,
Angew. Chem., Int. Ed.
46
,
8691
(
2007
).
6.
K.
Giese
,
M.
Petković
,
H.
Naundorf
, and
O.
Kühn
,
Phys. Rep.
430
,
211
(
2006
).
7.
O.
Vendrell
,
F.
Gatti
, and
H. D.
Meyer
,
Angew. Chem., Int. Ed.
46
,
6918
(
2007
).
8.
A. B.
McCoy
,
X.
Huang
,
S.
Carter
, and
J. M.
Bowman
,
J. Chem. Phys.
123
,
064317
(
2005
).
9.
Y.
Yang
and
O.
Kühn
,
Z. Phys. Chem.
222
,
1375
(
2008
).
10.
M.
Meuwly
and
M.
Karplus
,
J. Chem. Phys.
116
,
2572
(
2002
).
11.
V.
Zoete
and
M.
Meuwly
,
J. Chem. Phys.
120
,
7085
(
2004
).
12.
S.
Lammers
and
M.
Meuwly
,
J. Phys. Chem. A
111
,
1638
(
2007
).
13.
S.
Lammers
,
S.
Lutz
, and
M.
Meuwly
,
J. Comput. Chem.
29
,
1048
(
2008
).
14.
S. L.
Baughcum
,
R. W.
Duerst
,
W. F.
Rowe
,
Z.
Smith
, and
E. B.
Wilson
,
J. Am. Chem. Soc.
103
,
6296
(
1981
).
15.
D. W.
Firth
,
K.
Beyer
,
M. A.
Dvorak
,
S. W.
Reeve
,
A.
Grushow
, and
K. R.
Leopold
,
J. Chem. Phys.
94
,
1812
(
1991
).
16.
C. J.
Seliskar
and
R. E.
Hoffmann
,
J. Mol. Spectrosc.
96
,
146
(
1982
).
17.
Z.
Smith
and
E. B.
Wilson
,
Spectrochim. Acta, Part A
39
,
1117
(
1983
).
18.
D. W.
Firth
,
P. F.
Barbara
, and
H. P.
Trommsdorf
,
Chem. Phys.
136
,
349
(
1989
).
19.
T.
Chiavassa
,
R.
Roubin
,
L.
Piazzala
,
P.
Verlaque
,
A.
Allouche
, and
F.
Marinelli
,
J. Phys. Chem.
96
,
10659
(
1992
).
20.
C.
Duan
and
D.
Luckhaus
,
Chem. Phys. Lett.
391
,
129
(
2004
).
21.
Y.
Yang
,
O.
Kühn
,
G.
Santambrogio
,
D. J.
Goebbert
, and
K. R.
Asmis
,
J. Chem. Phys.
129
,
224302
(
2008
).
22.
A.
Alparone
and
S.
Millefiori
,
Chem. Phys.
290
,
15
(
2003
).
23.
D. P.
Tew
,
N. C.
Handy
, and
S.
Carter
,
J. Chem. Phys.
125
,
084313
(
2006
).
24.
A.
Viel
,
M. D.
Coutinho-Neto
, and
U.
Manthe
,
J. Chem. Phys.
126
,
024308
(
2007
).
25.
Y.
Wang
,
B. J.
Braams
,
J. M.
Bowman
,
S.
Carter
, and
D. P.
Tew
,
J. Chem. Phys.
128
,
224314
(
2008
).
26.
A.
Hazra
,
J. H.
Skone
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
130
,
054108
(
2009
).
27.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision B.04. Gaussian Inc., Wallingford, CT,
2004
.
28.
M.
Meuwly
and
J. M.
Hutson
,
J. Chem. Phys.
110
,
8338
(
1999
).
29.
B.
Gazdy
and
J. M.
Bowman
,
J. Chem. Phys.
95
,
6309
(
1991
).
30.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
31.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
32.
J. -P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
33.
P.
Steinbach
and
B.
Brooks
,
J. Comput. Chem.
15
,
667
(
1994
).
34.
M.
Schmitz
and
P.
Tavan
,
J. Chem. Phys.
121
,
12233
(
2004
).
35.
M.
Schmitz
and
P.
Tavan
,
J. Chem. Phys.
121
,
12247
(
2004
).
36.
F. J.
Harris
,
Proc. IEEE
66
,
51
(
1978
).
37.
E.
Helfand
,
J. Chem. Phys.
69
,
1010
(
1978
).
38.
A. D.
MacKerell
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiorkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
,
J. Phys. Chem. B
102
,
3586
(
1998
).
39.
See supplementary material at http://dx.doi.org/10.1063/1.3447701 for force field parameters and additional frequency tables.
40.
M.
Devereus
and
M.
Meuwly
,
J. Chem. Inf. Model.
50
,
349
(
2010
).
41.
N.
Plattner
and
M.
Meuwly
,
Biophys. J.
94
,
2505
(
2008
).
42.
X.
Huang
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
044308
(
2005
).
43.
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
).
44.
T.
Carrington
and
W. H.
Miller
,
J. Chem. Phys.
81
,
3942
(
1984
).
45.
Y.
Yang
and
O.
Kühn
,
Mol. Phys.
106
,
2445
(
2008
).
46.
C.
Marston
and
G.
Balint-Kurti
,
J. Chem. Phys.
91
,
3571
(
1989
).
47.
T.
Carrington
and
W. H.
Miller
,
J. Chem. Phys.
84
,
4364
(
1986
).
48.
S. L.
Baughcum
,
Z.
Smith
,
E. B.
Wilson
, and
R. W.
Duerst
,
J. Am. Chem. Soc.
106
,
2260
(
1984
).
49.
L.
Walewski
,
P.
Bala
,
M.
Elstner
,
T.
Frauenheim
, and
B.
Lesyng
,
Chem. Phys. Lett.
397
,
451
(
2004
).
50.
W. H.
Miller
,
J. Chem. Phys.
61
,
1823
(
1974
).
51.
K.
Yagi
,
T.
Taketsugu
, and
K.
Hirao
,
J. Chem. Phys.
115
,
10647
(
2001
).
52.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
91
,
4026
(
1989
).
53.
T. D.
Sewell
,
Y.
Guo
, and
D. L.
Thompson
,
J. Chem. Phys.
103
,
8557
(
1995
).
54.
M.
Ben-Nun
and
T. J.
Martinez
,
J. Phys. Chem. A
103
,
6055
(
1999
).
55.
M.
Aschi
,
M.
D’Abramo
,
F.
Ramondo
,
I.
Daidone
,
M.
D’Alessandro
,
A. D.
Nola
, and
A.
Amadei
,
J. Phys. Org. Chem.
19
,
518
(
2006
).
56.
R. S.
Brown
,
A.
Tse
,
T.
Nakashima
, and
R. C.
Haddon
,
J. Am. Chem. Soc.
101
,
3157
(
1979
).
57.
S. A.
Nizkorodov
,
J. P.
Maier
, and
E. J.
Bieske
,
J. Chem. Phys.
103
,
1297
(
1995
).
58.
M.
Meuwly
,
S. A.
Nizkorodov
,
J. P.
Maier
, and
E. J.
Bieske
,
J. Chem. Phys.
104
,
3876
(
1996
).
59.
S. A.
Nizkorodov
,
O.
Dopfer
,
T.
Ruchti
,
M.
Meuwly
,
J. P.
Maier
, and
E. J.
Bieske
,
J. Phys. Chem.
99
,
17118
(
1995
).
60.
S. A.
Nizkorodov
,
Y.
Spinelli
,
E. J.
Bieske
,
J. P.
Maier
, and
O.
Dopfer
,
Chem. Phys. Lett.
265
,
303
(
1997
).
61.
E. J.
Bieske
and
O.
Dopfer
,
Chem. Rev. (Washington, D.C.)
100
,
3963
(
2000
).
62.
M.
Meuwly
and
R. J.
Bemish
,
J. Chem. Phys.
106
,
8672
(
1997
).
63.
O.
Dopfer
,
R. V.
Olkhov
, and
J. P.
Maier
,
J. Phys. Chem. A
103
,
2982
(
1999
).
64.
J.
Tang
and
T.
Oka
,
J. Mol. Spectrosc.
196
,
120
(
1999
).

Supplementary Material

You do not currently have access to this content.