Recent two-dimensional infrared (2D-IR) experiments on a short peptide 310-helix in chloroform solvent [E. H. G. Backus et al, J. Phys. Chem. B113, 13405 (2009)] revealed an intriguing temperature dependence of the homogeneous line width, which was interpreted in terms of a dynamical transition of the peptide. To explain these findings, extensive molecular dynamics simulations at various temperatures were performed in order to construct the free energy landscape of the system. The study recovers the familiar picture of a glass-forming system, which below the glass transition temperature Tg is trapped in various energy basins, while it diffuses freely between these basins above Tg. In fact, one finds at Tg270K a sharp rise of the fluctuations of the backbone dihedral angles, which reflects conformational transitions of the peptide. The corresponding CO frequency fluctuations are found to be a sensitive probe of the peptide conformational dynamics from femtosecond to nanosecond time scales and lead to 2D-IR spectra that qualitatively match the experiment. The calculated homogeneous line width, however, does not show the biphasic temperature dependence observed in experiment.

1.
H.
Hartmann
,
F.
Parak
,
W.
Steigemann
,
G. A.
Petsko
,
D. R.
Ponzi
, and
H.
Frauenfelder
,
Proc. Natl. Acad. Sci. U.S.A.
79
,
4967
(
1982
).
2.
W.
Doster
,
S.
Cusack
, and
W.
Petry
,
Nature (London)
337
,
754
(
1989
).
3.
B. F.
Rasmussen
,
A. M.
Stock
,
D.
Ringe
, and
G. A.
Petsko
,
Nature (London)
357
,
423
(
1992
).
4.
G.
Caliskan
,
R. M.
Briber
,
D.
Thirumalai
,
V.
Garcia-Sakai
,
S. A.
Woodson
, and
A. P.
Sokolov
,
J. Am. Chem. Soc.
128
,
32
(
2006
).
5.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature (London)
410
,
259
(
2001
).
6.
J. N.
Onuchic
,
Z. L.
Schulten
, and
P. G.
Wolynes
,
Annu. Rev. Phys. Chem.
48
,
545
(
1997
).
7.
K. E. S.
Tang
and
K. A.
Dill
,
J. Biomol. Struct. Dyn.
16
,
397
(
1998
).
8.
A. L.
Tournier
and
J. C.
Smith
,
Phys. Rev. Lett.
91
,
208106
(
2003
).
9.
A.
Ansari
,
C. M.
Jones
,
E. R.
Henry
,
J.
Hofrichter
, and
W. A.
Eaton
,
Science
256
,
1796
(
1992
).
10.
D.
Vitkup
,
D.
Ringe
,
G. A.
Petsko
, and
M.
Karplus
,
Nat. Struct. Biol.
7
,
34
(
2000
).
11.
12.
P. W.
Fenimore
,
H.
Frauenfelder
,
B. H.
McMahon
, and
F. G.
Parak
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
16047
(
2002
).
13.
M.
Tarek
and
D. J.
Tobias
,
Phys. Rev. Lett.
88
,
138101
(
2002
).
14.
K.
Moritsugu
,
O.
Miyashita
, and
A.
Kidera
,
J. Phys. Chem. B
107
,
3309
(
2003
).
15.
K.
Moritsugu
and
J. C.
Smith
,
J. Phys. Chem. B
110
,
5807
(
2006
).
16.
H.
Frauenfelder
,
G.
Chen
,
J.
Berendzen
,
P. W.
Fenimore
,
H.
Jansson
,
B. H.
McMahon
,
I. R.
Stroe
,
J.
Swenson
, and
R. D.
Young
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
5129
(
2009
).
17.
P.
Kumar
,
Z.
Yan
,
L.
Xu
,
M. G.
Mazza
,
S. V.
Buldyrev
,
S. -H.
Chen
,
S.
Sastry
, and
H. E.
Stanley
,
Phys. Rev. Lett.
97
,
177802
(
2006
).
18.
Y.
He
,
P. I.
Ku
,
J. R.
Knab
,
J. Y.
Chen
, and
A. G.
Markelz
,
Phys. Rev. Lett.
101
,
178103
(
2008
).
19.
E.
Backus
,
P. H.
Nguyen
,
V.
Botan
,
R.
Pfister
,
A.
Moretto
,
M.
Crisma
,
C.
Toniolo
,
G.
Stock
, and
P.
Hamm
,
J. Phys. Chem. B
112
,
15487
(
2008
).
20.
E. H. G.
Backus
,
R.
Bloem
,
R.
Pfister
,
A.
Moretto
,
M.
Crisma
,
C.
Toniolo
, and
P.
Hamm
,
J. Phys. Chem. B
113
,
13405
(
2009
).
21.
V.
Botan
,
E.
Backus
,
R.
Pfister
,
A.
Moretto
,
M.
Crisma
,
C.
Toniolo
,
P. H.
Nguyen
,
G.
Stock
, and
P.
Hamm
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
12749
(
2007
).
22.
E.
Backus
,
P. H.
Nguyen
,
V.
Botan
,
R.
Pfister
,
A.
Moretto
,
M.
Crisma
,
C.
Toniolo
,
G.
Stock
, and
P.
Hamm
,
J. Phys. Chem. B
112
,
9091
(
2008
).
23.
P. H.
Nguyen
,
S. M.
Park
, and
G.
Stock
,
J. Chem. Phys.
132
,
025102
(
2010
).
24.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
25.
W. F.
van Gunsteren
,
S. R.
Billeter
,
A. A.
Eising
,
P. H.
Hünenberger
,
P.
Krüger
,
A. E.
Mark
,
W. R. P.
Scott
, and
I. G.
Tironi
,
Biomolecular Simulation: The GROMOS96 Manual and User Guide
(
Vdf Hochschulverlag AG an der ETH Zürich
,
Zürich
,
1996
).
26.
I. G.
Tironi
and
W. F.
van Gunsteren
,
Mol. Phys.
83
,
381
(
1994
).
27.
T.
Darden
,
D.
York
, and
L.
Petersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
28.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
29.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
Dinola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
30.
M.
Kobus
,
R. D.
Gorbunov
,
P. H.
Nguyen
, and
G.
Stock
,
Chem. Phys.
347
,
208
(
2008
).
31.
S. A.
Corcelli
,
C. P.
Lawrence
, and
J. L.
Skinner
,
J. Chem. Phys.
120
,
8107
(
2004
).
32.
P.
Bouř
and
T. A.
Keiderling
,
J. Phys. Chem. B
109
,
23687
(
2005
).
33.
S.
Li
,
J. R.
Schmidt
,
S. A.
Corcelli
,
C. P.
Lawrence
, and
J. L.
Skinner
,
J. Chem. Phys.
124
,
204110
(
2006
).
34.
W.
Zhuang
,
D.
Abramavicius
,
T.
Hayashi
, and
S.
Mukamel
,
J. Phys. Chem. B
110
,
3362
(
2006
).
35.
T.
la Cour Jansen
,
A. G.
Dijkstra
,
T. M.
Watson
,
J. D.
Hirst
, and
J.
Knoester
,
J. Chem. Phys.
125
,
044312
(
2006
).
36.
R. D.
Gorbunov
and
G.
Stock
,
Chem. Phys. Lett.
437
,
272
(
2007
).
37.
R. D.
Gorbunov
,
D. S.
Kosov
, and
G.
Stock
,
J. Chem. Phys.
122
,
224904
(
2005
).
38.
T.
la Cour Jansen
and
J.
Knoester
,
J. Chem. Phys.
124
,
044502
(
2006
).
39.
40.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
University Press
,
Oxford
,
1995
).
41.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
42.
T.
la Cour Jansen
and
J.
Knoester
,
J. Phys. Chem. B
110
,
22910
(
2006
).
43.
A.
Tokmakoff
,
J. Phys. Chem. A
104
,
4247
(
2000
).
44.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
102
,
6123
(
1998
).
45.
K. A.
Dill
and
H. S.
Chan
,
Nat. Struct. Biol.
4
,
10
(
1997
).
46.
M.
Gruebele
,
Curr. Opin. Struct. Biol.
12
,
161
(
2002
).
47.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
Cambridge
,
2003
).
48.
G.
Gfeller
,
P.
De Los Rios
,
A.
Caflisch
, and
F.
Rao
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
1817
(
2007
).
49.
It should be noted, however, that for improved sampling (e.g., by starting at left- and right-handed conformations), we should also obtain at 220 K a ϕ-symmetric form of the free energy landscape. Hence, the rise of the fluctuations along ϕ in Fig. 1 is to some extent a sampling artifact, which disappears when we average over both chiralities as done in Fig. 4(a).
50.
P.
Hamm
,
S. M.
Ohline
, and
W.
Zinth
,
J. Chem. Phys.
106
,
519
(
1997
).
You do not currently have access to this content.