Pure melts of asymmetric diblock copolymers are studied by means of the off-lattice Gaussian disphere model with Monte-Carlo kinetics. In this model, a diblock copolymer chain is mapped onto two soft repulsive spheres with fluctuating radii of gyration and distance between centers of mass of the spheres. Microscopic input quantities of the model such as the combined probability distribution for the radii of gyration and the distance between the spheres as well as conditional monomer number densities assigned to each block were derived in the previous work of F. Eurich and P. Maass [J. Chem. Phys. 114, 7655 (2001)] within an underlying Gaussian chain model. The polymerization degree of the whole chain as well as those of the individual blocks are freely tunable parameters thus enabling a precise determination of the regions of stability of various phases. The model neglects entanglement effects which are irrelevant for the formation of ordered structures in diblock copolymers and which would otherwise unnecessarily increase the equilibration time of the system. The gyroid phase was reproduced in between the cylindrical and lamellar phases in systems with box sizes being commensurate with the size of the unit cell of the gyroid morphology. The region of stability of the gyroid phase was studied in detail and found to be consistent with the prediction of the mean-field theory. Packing frustration was observed in the form of increased radii of gyration of both blocks of the chains located close to the gyroid nodes.

1.
F.
Eurich
and
P.
Maass
,
J. Chem. Phys.
114
,
7655
(
2001
).
2.
A. J.
Meuler
,
M. A.
Hillmyer
, and
F. S.
Bates
,
Macromolecules
42
,
7221
(
2009
).
3.
M. W.
Matsen
and
M.
Schick
,
Phys. Rev. Lett.
72
,
2660
(
1994
).
4.
M. W.
Matsen
and
F. S.
Bates
,
Macromolecules
29
,
1091
(
1996
).
5.
I. W.
Hamley
,
K. A.
Koppi
,
J. H.
Rosedale
,
F. S.
Bates
K.
Almdal
, and
K.
Mortensen
,
Macromolecules
26
,
5959
(
1993
).
6.
D. A.
Hajduk
,
H.
Takenouchi
,
M. A.
Hillmyer
,
F. S.
Bates
,
M. E.
Vigild
, and
K.
Almdal
,
Macromolecules
30
,
3788
(
1997
).
7.
C. A.
Tyler
and
D. C.
Morse
,
Phys. Rev. Lett.
94
,
208302
(
2005
).
8.
A.
Ranjan
and
D. C.
Morse
,
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
74
,
011803
(
2006
).
9.
K.
Yamada
,
M.
Nonomura
, and
T.
Ohta
,
J. Phys: Condens. Matter
18
,
L421
(
2006
).
10.
M.
Takenaka
,
T.
Wakada
,
S.
Akasaka
,
S.
Nishitsuji
,
K.
Saijo
,
H.
Shimizu
,
M. I.
Kim
, and
H.
Hasegawa
,
Macromolecules
40
,
4399
(
2007
).
11.
M. I.
Kim
,
T.
Wakada
,
S.
Akasaka
,
S.
Nishitsuji
,
K.
Saijo
,
H.
Hasegawa
,
K.
Ito
, and
M.
Takenaka
,
Macromolecules
41
,
7667
(
2008
).
12.
M. I.
Kim
,
T.
Wakada
,
S.
Akasaka
,
S.
Nishitsuji
,
K.
Saijo
,
H.
Hasegawa
,
K.
Ito
, and
M.
Takenaka
,
Macromolecules
42
,
5266
(
2009
).
13.
D. A.
Hajduk
,
P. E.
Harper
,
S. M.
Gruner
,
C. C.
Honeker
,
G.
Kim
,
E. L.
Thomas
, and
L. J.
Fetters
,
Macromolecules
27
,
4063
(
1994
).
14.
M. F.
Schulz
,
F. S.
Bates
,
K.
Almdal
, and
K.
Morrtensen
,
Phys. Rev. Lett.
73
,
86
(
1994
).
15.
H.
Pernot
,
M.
Baumert
,
F.
Court
, and
L.
Leibler
,
Nat. Mater.
1
,
54
(
2002
).
16.
E. J. W.
Crossland
,
M.
Kamperman
,
M.
Nedelcu
,
C.
Ducati
,
U.
Wiesner
,
D.
Smilgies
,
G. E. S.
Toombes
,
M. A.
Hillmyer
,
S.
Ludwigs
,
U.
Steiner
, and
H. J.
Snaith
,
Nano Lett.
9
,
2807
(
2009
).
17.
E. J. W.
Crossland
,
M.
Nedelcu
,
C.
Ducati
,
S.
Ludwigs
,
M. A.
Hillmyer
,
U.
Steiner
, and
H. J.
Snaith
,
Nano Lett.
9
,
2813
(
2009
).
18.
S. Y.
Yang
,
I.
Ryu
,
H. Y.
Kim
,
J. K.
Kim
,
S. K.
Jang
, and
T. P.
Russell
,
Adv. Mater.
18
,
7009
(
2006
).
19.
W. A.
Phillip
,
J.
Rzayev
,
M. A.
Hillmyer
, and
E. L.
Cussler
,
J. Membr. Sci.
144
,
286
(
2006
).
20.
A. M.
Urbas
,
M.
Maldovan
,
P.
DeRege
, and
E. L.
Thomas
,
Adv. Mater.
14
,
1850
(
2002
).
21.
M. W.
Matsen
and
F. S.
Bates
,
Macromolecules
29
,
7641
(
1996
).
22.
A. E.
Likhtman
and
A. N.
Semenov
,
Macromolecules
30
,
7273
(
1997
).
23.
E. L.
Thomas
,
D. B.
Alward
,
D. J.
Kinning
,
D. C.
Martin
,
D. L.
Handlin
, and
L. J.
Fetters
,
Macromolecules
19
,
2197
(
1986
).
24.
H.
Hasegawa
,
H.
Tanaka
,
K.
Yamasaki
, and
T.
Hashimoto
,
Macromolecules
20
,
1651
(
1987
).
25.
R. J.
Spontak
,
S. D.
Smith
, and
A.
Ashraf
,
Microsc. Res. Tech.
27
,
412
(
1994
).
26.
E. W.
Cochran
,
C. J.
Garcia-Cervera
, and
G. H.
Fredrickson
,
Macromolecules
39
,
2449
(
2006
).
27.
H.
Hasegawa
,
T.
Hashimoto
, and
S. T.
Hyde
,
Polymer
37
,
3825
(
1996
).
28.
F. A.
Detcheverry
,
H.
Kang
,
K. Ch.
Daoulas
,
M.
Mueller
,
P. F.
Nealey
, and
J. J.
de Pablo
,
Macromolecules
41
,
4989
5001
(
2008
).
29.
F. A.
Detcheverry
,
D. Q.
Pike
,
P. F.
Nealey
,
M.
Mueller
, and
J. J.
de Pablo
,
Faraday Discuss.
144
,
111
(
2010
).
30.
31.
M. W.
Matsen
and
R. B.
Thompson
,
J. Chem. Phys.
111
,
7139
(
1999
).
32.
B.
Abu-Sharkh
and
A.
AlSunaidi
,
Macromol. Theory Simul.
15
,
507
(
2007
).
33.
M.
Ma
,
E. L.
Thomas
, and
G. C.
Rutledge
,
Macromolecules
43
,
3061
(
2010
).
34.
F. J.
Martinez-Veracoechea
and
F. A.
Escobedo
,
Macromolecules
38
,
8522
(
2005
).
35.
F. J.
Martinez-Veracoechea
and
F. A.
Escobedo
,
J. Chem. Phys.
125
,
104907
(
2006
).
36.
F.
Eurich
,
A.
Karatchentsev
,
W.
Dieterich
,
P.
Maass
, and
J.
Baschnagel
,
J. Chem. Phys.
127
,
134905
(
2007
).
37.
F.
Eurich
,
P.
Maass
, and
J.
Baschnagel
,
J. Chem. Phys.
117
,
4564
(
2002
).
38.
L.
Leibler
,
Macromolecules
13
,
1602
(
1980
).
39.
H.
Fried
and
K.
Binder
,
J. Chem. Phys.
94
,
8349
(
1991
).
40.
A.
Hoffmann
,
J.-U.
Sommer
, and
A.
Blumen
,
J. Chem. Phys.
106
,
6709
(
1997
).
41.
A.
Hoffmann
,
J.-U.
Sommer
, and
A.
Blumen
,
J. Chem. Phys.
107
,
7559
(
1997
).
42.
F. J.
Martinez-Veracoechea
and
F. A.
Escobedo
,
Macromolecules
40
,
7354
(
2007
).
You do not currently have access to this content.