Polarizable continuum models (PCMs) are a widely used family of implicit solvent models based on reaction-field theory and boundary-element discretization of the solute/continuum interface. An often overlooked aspect of these theories is that discretization of the interface typically does not afford a continuous potential energy surface for the solute. In addition, we show that discretization can lead to numerical singularities and violations of exact variational conditions. To fix these problems, we introduce the switching/Gaussian (SWIG) method, a discretization scheme that overcomes several longstanding problems with PCMs. Our approach generalizes a procedure introduced by York and Karplus [J. Phys. Chem. A 103, 11060 (1999)], extending it beyond the conductor-like screening model. Comparison to other purportedly smooth PCM implementations reveals certain artifacts in these alternative approaches, which are avoided using the SWIG methodology. The versatility of our approach is demonstrated via geometry optimizations, vibrational frequency calculations, and molecular dynamics simulations, for solutes described using quantum mechanics and molecular mechanics.

1.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
2.
D. M.
Chipman
,
Theor. Chem. Acc.
107
,
80
(
2002
).
3.
D. M.
Chipman
,
J. Chem. Phys.
112
,
5558
(
2000
).
4.
D. M.
Chipman
and
M.
Dupuis
,
Theor. Chem. Acc.
107
,
90
(
2002
).
5.
V.
Barone
and
M.
Cossi
,
J. Phys. Chem. A
102
,
1995
(
1998
).
6.
T. N.
Truong
and
E. V.
Stefanovich
,
Chem. Phys. Lett.
240
,
253
(
1995
).
7.
T. N.
Truong
,
U. N.
Nguyen
, and
E. V.
Stefanovich
,
Int. J. Quantum Chem. Symp.
30
,
1615
(
1996
).
8.
E.
Cancès
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
3032
(
1997
).
9.
B.
Mennucci
,
E.
Cancés
, and
J.
Tomasi
,
J. Phys. Chem. B
101
,
10506
(
1997
).
10.
J.
Tomasi
,
B.
Mennucci
, and
E.
Cancès
,
J. Mol. Struct: THEOCHEM
464
,
211
(
1999
).
11.
E.
Cancès
and
B.
Mennucci
,
J. Chem. Phys.
114
,
4744
(
2001
).
12.
J. B.
Foresman
,
T. A.
Keith
,
K. B.
Wiberg
,
J.
Snoonian
, and
M. J.
Frisch
,
J. Phys. Chem.
100
,
16098
(
1996
).
13.
V.
Barone
,
M.
Cossi
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
3210
(
1997
).
14.
B.
Ginovska
,
D. M.
Camaioni
,
M.
Dupuis
,
C. A.
Schwerdtfeger
, and
Q.
Gil
,
J. Phys. Chem. A
112
,
10604
(
2008
).
15.
A. W.
Lange
and
J. M.
Herbert
,
J. Phys. Chem. Lett.
1
,
556
(
2010
).
16.
D. M.
York
and
M.
Karplus
,
J. Phys. Chem. A
103
,
11060
(
1999
).
17.
A.
Klamt
and
G.
Schüürmann
,
J. Chem. Soc. Perkin Trans.
2
,
799
(
1993
).
18.
C. S.
Pomelli
,
J. Comput. Chem.
25
,
1532
(
2004
).
19.
H.
Li
and
J. H.
Jensen
,
J. Comput. Chem.
25
,
1449
(
2004
).
20.
P.
Su
and
H.
Li
,
J. Chem. Phys.
130
,
074109
(
2009
).
21.
G.
Scalmani
and
M. J.
Frisch
,
J. Chem. Phys.
132
,
114110
(
2010
).
22.
F. M.
Floris
,
J.
Tomasi
, and
J. L.
Pascual-Ahuir
,
J. Comput. Chem.
12
,
784
(
1991
).
23.
M.
Cossi
,
V.
Barone
,
R.
Cammi
, and
J.
Tomasi
,
Chem. Phys. Lett.
255
,
327
(
1996
).
24.
L.
Onsager
,
J. Am. Chem. Soc.
58
,
1486
(
1936
).
25.
J. G.
Kirkwood
, ,
J. Chem. Phys.
2
,
351
(
1934
).
27.
A.
Bondi
,
J. Phys. Chem.
68
,
441
(
1964
).
28.
R.
Bonaccorsi
,
P.
Palla
, and
J.
Tomasi
,
J. Am. Chem. Soc.
106
,
1945
(
1984
).
29.
M. L.
Connolly
,
J. Appl. Crystallog.
16
,
548
(
1983
).
30.
J. L.
Pascual-Ahuir
,
E.
Silla
, and
I.
Tunon
,
J. Comput. Chem.
15
,
1127
(
1994
).
31.
V. I.
Lebedev
,
USSR Comp. Math. Math+
15
,
44
(
1975
).
32.
M.
Cossi
,
B.
Mennucci
, and
R.
Cammi
,
J. Comput. Chem.
17
,
57
(
1996
).
33.
G.
Scalmani
,
V.
Barone
,
K. N.
Kudin
,
C. S.
Pomelli
,
G. E.
Scuseria
, and
M. J.
Frisch
,
Theor. Chem. Acc.
111
,
90
(
2004
).
34.
R.
Cammi
and
J.
Tomasi
,
J. Chem. Phys.
100
,
7495
(
1994
).
35.
R.
Cammi
and
J.
Tomasi
,
J. Chem. Phys.
101
,
3888
(
1994
).
36.
E.
Cancès
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
109
,
260
(
1998
).
37.
M.
Cossi
,
G.
Scalmani
,
N.
Rega
, and
V.
Barone
,
J. Chem. Phys.
117
,
43
(
2002
).
38.
M.
Cossi
,
N.
Rega
,
G.
Scalmani
, and
V.
Barone
,
J. Comput. Chem.
24
,
669
(
2002
).
39.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schegel
, and
J. S.
Binkley
,
Int. J. Quantum Chem. Symp.
13
,
225
(
1979
).
40.
F.
Chen
and
D. M.
Chipman
,
J. Chem. Phys.
119
,
10289
(
2003
).
41.
B. A.
Gregersen
and
D. M.
York
,
J. Chem. Phys.
122
,
194110
(
2005
).
42.
See supplementary material at http://dx.doi.org/10.1063/1.3511297 for definitions of the switching function parameters and numerical data regarding convergence with respect to the number of Lebedev grid points.
43.
J.
Khandogin
,
B. A.
Gregersen
,
W.
Thiel
, and
D. M.
York
,
J. Phys. Chem. B
109
,
9799
(
2005
).
44.
D. M.
Chipman
,
J. Chem. Phys.
110
,
8012
(
1999
).
45.
A.
Rashin
and
K.
Namboodiri
,
J. Phys. Chem.
91
,
6003
(
1987
).
46.
E. O.
Purisima
and
S. H.
Nilar
,
J. Comput. Chem.
16
,
681
(
1995
).
47.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O'Neill
,
R. A.
DiStasio
,
Jr, R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D. Adamson B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
48.
R. S.
Rowland
and
R.
Taylor
,
J. Phys. Chem.
100
,
7384
(
1996
).
49.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
,
J. Comput. Chem.
21
,
1049
(
2000
).
50.
One could reasonably argue that the use of AMBER
$\!\smash{\begin{array}{l}\\[-4.8pt]^{99}\\\end{array}}$
99
point charges is inappropriate for bond-breaking, and that ionic radii for
$\rm Na^+$
Na +
and
$\rm Cl^-$
Cl
should not be used when the Na–Cl distance is small. However, our intention here is not to develop an accurate model of bond-breaking in solution, but rather to explore the singularities that can occur as atomic spheres interpenetrate, and this simple example suffices for that purpose.
51.
A.
Klamt
,
B.
Mennucci
,
J.
Tomasi
,
V.
Barone
,
C.
Curutchet
,
M.
Orozco
, and
F. J.
Luque
,
Acc. Chem. Res.
42
,
489
(
2009
).
52.
In test calculations using the Adaptive Poisson-Boltzmann Solver, (Ref. 53), we observed deviations of <0.1 kcal/mol in the solvation energies of randomly selected rotations of alanine, even using coarse grids with Δx = 0.3 Å for which solvation energies are certainly not converged.
53.
N. A.
Baker
,
D.
Sept
,
S.
Joseph
,
M. J.
Holst
, and
J. A.
McCammon
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
10037
(
2001
).
54.
TINKER, version 4.2, http://dasher.wustl.edu/tinker.
55.
J. H.
Jensen
and
M. S.
Gordon
,
J. Am. Chem. Soc.
117
,
8159
(
1995
).
56.
P.
Bandyopadhyay
,
M. S.
Gordon
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
116
,
5023
(
2002
).
57.
F.
Lipparini
,
G.
Scalmani
,
B.
Mennucci
,
E.
Cancès
,
M.
Caricato
, and
M. J.
Frisch
,
J. Chem. Phys.
133
,
014106
(
2010
).

Supplementary Material

You do not currently have access to this content.