The design of simulations of free evolution in dipolar-coupled nuclear-spin systems using low-order correlations in Liouville space (LCL) is discussed, and a computational scheme relying on the Suzuki–Trotter algorithm and involving minimal memory requirements is described. The unusual nature of the approximation introduced by Liouville-space reduction in a spinning solid is highlighted by considering the accuracy of LCL simulations at different spinning frequencies, the quasiequilibria achieved by spin systems in LCL simulations, and the growth of high-order coherences in the exact dynamics. In particular, it is shown that accurate LCL simulations of proton spin diffusion occur in a regime where the reduced space excludes the coherences that make the dominant contribution to

$\Vert \sigma \Vert ^2$
σ2⁠, the norm-squared of the density matrix.

1.
F. S.
Debouregas
, and
J. S.
Waugh
,
J. Magn. Reson.
96
,
280
(
1992
).
2.
S. A.
Smith
,
T. O.
Levante
,
B. H.
Meier
, and
R. R.
Ernst
,
J. Magn. Reson.
106
,
75
(
1994
).
3.
M.
Bak
, J. T. Rasmussen, and
N. C.
Nielsen
,
J. Magn. Reson.
147
,
296
(
2000
).
4.
P.
Hodgkinson
and
L.
Emsley
,
Prog. Nucl. Magn. Reson. Spectrosc.
36
,
201
(
2000
).
5.
M. Veshtort and
R. G.
Griffin
,
J. Magn. Reson.
178
,
248
(
2006
).
6.
R. R.
Ernst
,
G.
Bodenhausen
, and
A.
Wokaun
,
Principles of Nuclear Magnetic Resonance in One and Two Dimensions
(
Oxford University Press
,
Oxford
,
1990
).
7.
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Multidimensional Solid-State NMR and Polymers
(
Academic Press
,
New York
,
1994
).
8.
H.
Geen
,
J. J.
Titman
,
J.
Gottwald
, and
H. W.
Spiess
,
Chem. Phys. Lett.
227
,
79
(
1994
).
9.
Y. S.
Yen
and
A.
Pines
,
J. Chem. Phys.
78
,
3579
(
1983
).
10.
M.
Munowitz
and
A.
Pines
,
Adv. Chem. Phys.
66
,
1
(
1987
).
11.
D.
Mcarthur
,
E.
Hahn
, and
R.
Walstedt
,
Phys. Rev.
188
,
609
(
1969
).
12.
M.
Levitt
,
D.
Suter
, and
R. R.
Ernst
,
J. Chem. Phys.
84
,
4243
(
1986
).
13.
D.
Suter
and
R. R.
Ernst
,
Phys. Rev. B
32
,
5608
(
1985
).
14.
C.
Tang
and
J. S.
Waugh
,
Phys. Rev. B
45
,
748
(
1992
).
15.
M.
Ernst
,
A.
Verhoeven
, and
B. H.
Meier
,
J. Magn. Reson.
130
,
176
(
1998
).
16.
D.
Sakellariou
,
P.
Hodgkinson
, and
L.
Emsley
,
Chem. Phys. Lett.
293
,
110
(
1998
).
17.
V. E.
Zorin
,
S. P.
Brown
, and
P.
Hodgkinson
,
J. Chem. Phys.
125
,
144508
(
2006
).
18.
M.
Aluas
,
C.
Tripon
,
J. M.
Griffin
,
X.
Filip
,
V.
Ladizhansky
,
R. G.
Griffin
,
S. P.
Brown
, and
C.
Filip
,
J. Magn. Reson.
199
,
173
(
2009
).
19.
J. P.
Bradley
,
C.
Tripon
,
C.
Filip
, and
S. P.
Brown
,
Phys. Chem. Chem. Phys.
11
,
6941
(
2009
).
20.
H.
Takahashi
,
H.
Akutsu
, and
T.
Fujiwara
,
J. Chem. Phys.
129
,
154504
(
2008
).
21.
R.
Bruschweiler
and
R. R.
Ernst
,
J. Magn. Reson.
124
,
122
(
1997
).
22.
H. J.
Hogben
,
P. J.
Hore
, and
I.
Kuprov
,
J. Chem. Phys.
132
,
174101
(
2010
).
24.
I.
Kuprov
,
N.
Wagner-Rundell
, and
P. J.
Hore
,
J. Magn. Reson.
189
,
241
(
2007
).
25.
R.
R. P.
Senthamarai
,
I.
Kuprov
, and
K.
Pervushin
,
J. Magn. Reson.
203
,
129
(
2010
).
26.
M. C.
Butler
,
J.-N.
Dumez
, and
L.
Emsley
,
Chem. Phys. Lett.
477
,
377
(
2009
).
27.
J.-N.
Dumez
,
M. C.
Butler
,
E.
Salager
,
B.
Elena-Herrmann
, and
L.
Emsley
,
Phys. Chem. Chem. Phys.
12
,
9172
(
2010
).
28.
V. E.
Zorin
,
M.
Ernst
,
S. P.
Brown
, and
P.
Hodgkinson
,
J. Magn. Reson.
192
,
183
(
2008
).
29.
P.
Hodgkinson
,
D.
Sakellariou
, and
L.
Emsley
,
Chem. Phys. Lett.
326
,
515
(
2000
).
30.
H.
De Raedt
and
K.
Michielsen
, in
Handbook of Theoretical and Computational Nanotechnology
, edited by M. Rieth and W. Schommers (American Scientific Publishers,
2006
).
31.
W. X.
Zhang
,
N.
Konstantinidis
,
K. A.
Al-Hassanieh
, and
V. V.
Dobrovitski
,
J. Phys.: Condens. Matter
19
,
083202
(
2007
).
32.
M.
Suzuki
,
S.
Miyashita
, and
A.
Kuroda
,
Prog. Theor. Phys.
58
,
1377
(
1977
).
33.
M.
Eden
,
Y.
Lee
, and
M.
Levitt
,
J. Magn. Reson. A
120
,
56
(
1996
).
34.
M.
Helmle
,
Y.
Lee
,
P. X.
Feng
,
T.
Karlsson
,
J.
Lugtenburg
,
H.
de Groot
, and
M.
Levitt
,
J. Magn. Reson.
140
,
379
(
1999
).
35.
M.
Hohwy
,
H.
Bildsoe
,
H.
Jakobsen
, and
N.
Nielsen
,
J. Magn. Reson.
136
,
6
(
1999
).
36.
O. W.
Sorensen
,
Prog. Nucl. Magn. Reson. Spectrosc.
21
503
(
1989
).
37.
M.
Eden
,
Concepts Magn. Reson.
18A
,
24
(
2003
).
38.
The name is chosen in reference to the cog-wheel model of Ref. 21.
39.
M.
Munowitz
,
A.
Pines
, and
M.
Mehring
,
J. Chem. Phys.
86
,
3172
(
1987
).
40.
See supplementary information of Ref. 26.
41.
B. H.
Meier
,
Adv. Magn. Opt. Reson.
18
,
1
(
1994
).
42.
An illustrative code implementing this method is available upon request to the authors.
You do not currently have access to this content.