The theoretical treatment of chemical reactions inevitably includes the integration of reaction pathways. After reactant, transition structure, and product stationary points on the potential energy surface are located, steepest descent reaction path following provides a means for verifying reaction mechanisms. Accurately integrated paths are also needed when evaluating reaction rates using variational transition state theory or reaction path Hamiltonian models. In this work an Euler-based predictor–corrector integrator is presented and tested using one analytic model surface and five chemical reactions. The use of Hessian updating, as a means for reducing the overall computational cost of the reaction path calculation, is also discussed.

1.
H. P.
Hratchian
and
H. B.
Schlegel
, in
Theory and Applications of Computational Chemistry: The First Forty Years
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
Amsterdam
,
2005
) pp.
195
249
2.
H. B.
Schlegel
,
J. Comput. Chem.
24
,
1514
(
2003
).
3.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University
,
Cambridge
,
2003
).
4.
H. B.
Schlegel
, in
Encyclopedia of Computational Chemistry
, edited by
P. v. R.
Schleyer
,
N. L.
Allinger
,
P. A.
Kollman
,
T.
Clark
,
H. F.
Schaefer
 III
,
J.
Gasteiger
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1998
), Vol.
4
, pp.
2432
2437
.
5.
M. A.
Collins
,
Adv. Chem. Phys.
93
,
389
(
1996
).
6.
E.
Kraka
and
D.
Cremer
,
Acc. Chem. Res.
43
,
591
(
2010
).
7.
E.
Kraka
, in
Encyclopedia of Computational Chemistry
, edited by
P. v. R.
Schleyer
,
N. L.
Allinger
,
P. A.
Kollman
,
T.
Clark
,
H. F.
Schaefer
 III
,
J.
Gasteiger
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1998
), Vol. 2, pp.
2437
2463
.
8.
B. C.
Garrett
and
D. G.
Truhlar
, in
Encyclopedia of Computational Chemistry
, edited by
P. v. R.
Schleyer
,
N. L.
Allinger
,
P. A.
Kollman
,
T.
Clark
,
H. F.
Schaefer
 III
,
J.
Gasteiger
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1998
), Vol. 2, pp.
3094
3104
9.
D. G.
Truhlar
,
B. C.
Garrett
, and
S. J.
Klippenstein
,
J. Phys. Chem.
100
,
12771
(
1996
).
10.
D. G.
Truhlar
and
B. C.
Garrett
,
Annu. Rev. Phys. Chem.
35
,
159
(
1984
).
11.
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
).
12.
K.
Fukui
,
Acc. Chem. Res.
14
,
363
(
1981
).
13.
C. W.
Gear
,
Numerical Initial Value Problems in Ordinary Differential Equations
(
Prentice-Hall
,
Englewood Cliffs
, NJ,
1971
).
14.
M. W.
Schmidt
,
M. S.
Gordon
, and
M.
Dupuis
,
J. Am. Chem. Soc.
107
,
2585
(
1985
).
15.
K.
Ishida
,
K.
Morokuma
, and
A.
Komornicki
,
J. Chem. Phys.
66
,
2153
(
1977
).
16.
K. K.
Baldridge
,
M. S.
Gordon
,
R.
Steckler
, and
D. G.
Truhlar
,
J. Phys. Chem.
93
,
5107
(
1989
).
17.
B. C.
Garrett
,
M. J.
Redmon
,
R.
Steckler
,
D. G.
Truhlar
,
K. K.
Baldridge
,
D.
Bartol
,
M. W.
Schmidt
, and
M. S.
Gordon
,
J. Phys. Chem.
92
,
1476
(
1988
).
18.
A.
Aguilar-Mogas
,
X.
Gimenez
, and
J. M.
Bofill
,
Chem. Phys. Lett.
432
,
375
(
2006
).
19.
M.
Page
and
J. M.
McIver
,
J. Chem. Phys.
88
,
922
(
1988
).
20.
M.
Page
,
C.
Doubleday
, and
J. W.
McIver
,
J. Chem. Phys.
93
,
5634
(
1990
).
21.
J. Q.
Sun
and
K.
Ruedenberg
,
J. Chem. Phys.
99
,
5257
(
1993
).
22.
J. Q.
Sun
and
K.
Ruedenberg
,
J. Chem. Phys.
99
,
5269
(
1993
).
23.
F.
Eckert
and
H. J.
Werner
,
Theor. Chem. Acc.
100
,
21
(
1998
).
24.
S. A.
Maluendes
and
M. J.
Dupuis
,
J. Chem. Phys.
93
,
5902
(
1990
).
25.
H. P.
Hratchian
and
H. B.
Schlegel
,
J. Phys. Chem. A
106
,
165
(
2002
).
26.
K.
Mller
and
L. D.
Brown
,
Theor. Chim. Acta
53
,
75
(
1979
).
27.
C.
Gonzalez
and
H. B.
Schlegel
,
J. Chem. Phys.
90
,
2154
(
1989
).
28.
C.
Gonzalez
and
H. B.
Schlegel
,
J. Phys. Chem.
94
,
5523
(
1990
).
29.
C.
Gonzalez
and
H. B.
Schlegel
,
J. Chem. Phys.
95
,
5853
(
1991
).
30.
S. K.
Burger
and
W. T.
Yang
,
J. Chem. Phys.
124
,
224102
(
2006
).
31.
S. K.
Burger
and
W. T.
Yang
,
J. Chem. Phys.
125
,
244108
(
2006
).
32.
W. H.
Press
,
Numerical Recipes in FORTRAN 77: The Art of Scientific Computing
, 2nd ed. (
Cambridge University
,
Cambridge, England; New York
,
1996
).
33.
H. P.
Hratchian
and
H. B.
Schlegel
,
J. Chem. Phys.
120
,
9918
(
2004
).
34.
H. P.
Hratchian
and
H. B.
Schlegel
,
J. Chem. Theory Comp.
1
,
61
(
2005
).
35.
R.
Bulirsch
and
J.
Stoer
,
Numer. Math.
6
,
413
(
1964
).
36.
R.
Bulirsch
and
J.
Stoer
,
Numer. Math.
8
,
1
(
1966
).
37.
R.
Bulirsch
and
J.
Stoer
,
Numer. Math.
8
,
93
(
1966
).
38.
J. M.
Millam
,
V.
Bakken
,
W.
Chen
,
W. L.
Hase
, and
H. B.
Schlegel
,
J. Chem. Phys.
111
,
3800
(
1999
).
39.
V.
Bakken
,
J. M.
Millam
, and
H. B.
Schlegel
,
J. Chem. Phys.
111
,
8773
(
1999
).
40.
M. A.
Collins
,
Theor. Chem. Acc.
108
,
313
(
2002
).
41.
R. P. A.
Bettens
and
M. A.
Collins
,
J. Chem. Phys.
111
,
816
(
1999
).
42.
K. C.
Thompson
,
M. J. T.
Jordan
, and
M. A.
Collins
,
J. Chem. Phys.
108
,
564
(
1998
).
43.
J.
Ischtwan
and
M. A.
Collins
,
J. Chem. Phys.
100
,
8080
(
1994
).
44.
R.
Farwig
, in
Algorithm for approximation
, edited by
J. C.
Mason
and
M. G.
Cox
(
Clarendon, Oxford
,
1987
) p.
194
.
45.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, Gaussian Development Version, Revision H.09+,
Gaussian
, Inc.,
Wallingford, CT
,
2010
.
46.
J. J. P.
Stewart
,
J. Mol. Model.
13
,
1173
(
2007
).
47.
M.
Frisch
,
G.
Scalmani
,
T.
Vreven
, and
G.
Zheng
,
Mol. Phys.
107
,
881
(
2009
).
48.
J. M.
Bofill
,
J. Comput. Chem.
15
,
1
(
1994
).
49.
The RMS (maximum absolute) integration errors with a step size of 0.20 amu| $^{1/2}$|1/2 bohr are 0.0006 (0.0008), 0.0011 (0.0033), 0.0005 (0.0010), 0.0004 (0.0006), and 0.0014 (0.0037) amu| $^{1/2}$|1/2 bohr for HCN → HNC, H| $_3$|3CCH| $_2$|2F → H| $_2$|2CCH| $_2$|2+ HF, Cl| $^-$|+ CH| $_3$|3Cl → ClCH| $_3$|3+ Cl| $^-$|, H| $_2$|2COH → H| $_3$|3CO, and SiH| $_4$|4→ SiH| $_2$|2+ H| $_2$|2 test reactions, respectively. The RMS (maximum absolute) integration errors with a step size of 0.30 amu| $^{1/2}$|1/2 bohr are 0.0012 (0.0017), 0.0027 (0.0058), 0.0011 (0.0022), 0.0007 (0.0011), and 0.0031 (0.0080) amu| $^{1/2}$|1/2 bohr. The average RMS errors used in the ln(error) versus ln(Δs) linear regression are 0.0002 amu| $^{1/2}$|1/2 bohr (Δs = 0.10 amu| $^{1/2}$|1/2 bohr), 0.0008 amu| $^{1/2}$|1/2 bohr (Δs = 0.20 amu| $^{1/2}$|1/2 bohr), 0.0018 amu| $^{1/2}$|1/2 bohr (Δs = 0.30 amu| $^{1/2}$|1/2 bohr), and 0.0033 amu| $^{1/2}$|1/2 bohr (Δs = 0.40 amu| $^{1/2}$|1/2 bohr). The linear regression has an | $R^2$|R2 of 0.999.
50.
S.
Kato
and
K.
Morokuma
,
J. Chem. Phys.
73
,
3900
(
1980
).
51.
A. G.
Baboul
and
H. B.
Schlegel
,
J. Chem. Phys.
107
,
9413
(
1997
).
52.
P.
John
and
J. H.
Purnell
,
J. Chem. Soc. Faraday Trans.
69
,
1455
(
1973
).
53.
C.
Sosa
and
H. B.
Schlegel
,
J. Am. Chem. Soc.
106
,
5847
(
1984
).
You do not currently have access to this content.