Interaction between similarly charged surfaces can be attractive at high electrostatic coupling constants Ξ = lBZ2GC, where lB is the Bjerrum length, μGC the Gouy–Chapman length, and Z the valency of counterions. While this effect has been studied previously in detail, as a function of surface charge density and valency of the pointlike counterions, much less is known about the effect of counterion size. We apply the Wang–Landau sampling Monte Carlo (MC) simulation method to compute the free energy F as a function of the scaled distance between the plates

${\widetilde{D}}=D/\mu _{\rm GC}$
D̃=D/μ GC for a range of Ξ and scaled counterion radii
${\widetilde{R}}=R/\mu _{\rm GC}$
R̃=R/μ GC
. We find that for large Ξ and small ion radius, there is a global equilibrium distance
$ {\widetilde{D}}= {\widetilde{D}}_{\rm eq} =2(1+{\widetilde{R}})$
D̃=D̃ eq =2(1+R̃)
, correctly giving the expected value at the point counterion limit. With increasing
${\widetilde{R}}$
R̃
the global minimum in
$F({\widetilde{D}})$
F(D̃)
changes to a metastable state and finally this minimum vanishes when
${\widetilde{R}}$
R̃
reaches a critical value, which depends on Ξ. We present a state diagram indicating approximate boundaries between these three regimes. The Wang–Landau MC method, as it is applied here, offers a possibility to study a wide spectrum of extended problems, which cannot be treated by the use of contact value theorem.

1.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic
,
London
,
1991
).
2.
3.
N.
Ise
,
T.
Konishi
, and
B. V. R.
Tata
,
Langmuir
15
,
4176
(
1999
).
4.
K.
Besteman
,
M. A. G.
Zevenbergen
,
H. A.
Heering
, and
S. G.
Lemay
,
Phys. Rev. Lett.
93
,
170802
(
2004
).
5.
J.
Urbanija
 et al,
Chem. Phys. Lipids
150/1
,
49
(
2007
).
6.
J.
Urbanija
 et al,
Eur. Biophys. J.
37
,
1085
(
2008
).
7.
A.
Moreira
and
R. R.
Netz
,
Eur. Phys. J. E
8
,
33
(
2002
).
8.
H.
Boroudjerdi
 et al,
Phys. Rep.
416
,
129
(
2005
).
9.
O.
Punkkinen
 et al,
Europhys. Lett.
82
,
48001
(
2008
).
10.
B. E.
Conway
,
Electrochim. Acta
40
,
1501
(
1995
).
11.
J.
Cervera
,
J. A.
Manzanares
, and
S.
MafŽ
,
J. Membr. Sci.
191
,
179
(
2001
).
12.
E.
Gouaux
and
R.
MacKinnon
,
Science
310
,
1461
(
2005
).
13.
R.
Kjellander
and
S.
Marčelja
,
J. Phys. Chem.
90
,
1230
(
1986
).
14.
J. P.
Valleau
,
R.
Ivkov
, and
G. M.
Torrie
,
J. Chem. Phys.
95
,
520
(
1991
).
15.
R.
Kjellander
,
T.
Akesson
,
B.
Jönsson
, and
S.
Marčelja
,
J. Chem. Phys.
97
,
1424
(
1992
).
16.
P.
Bolhuis
,
T.
Akesson
, and
B.
Jönsson
,
J. Chem. Phys.
98
,
8096
(
1993
).
17.
V.
Kralj-Iglič
and
A.
Iglič
,
J. Phys. II
6
,
477
(
1996
).
18.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
,
Phys. Rev. Lett.
79
,
435
(
1997
).
19.
C. N.
Patra
and
S. K.
Ghosh
,
J. Chem. Phys.
117
,
8938
(
2002
).
20.
M.
Quesada-Pérez
,
A.
Martín-Molina
, and
R.
Hidalgo-Álvarez
,
J. Chem. Phys.
121
,
8618
(
2004
).
21.
D.
Boda
,
D.
Henderson
,
P.
Plaschko
, and
W. R.
Fawcett
,
Mol. Simul.
30
,
137
(
2004
).
22.
M. S.
Kilic
,
M. Z.
Bazant
, and
A.
Ajdari
,
Phys. Rev. E
75
,
021502
(
2007
).
23.
J. G.
Ibarra-Armenta
,
A.
Martín-Molina
, and
M.
Quesada-Pérez
,
Phys. Chem. Chem. Phys.
11
,
309
(
2009
).
24.
Y.
Li
and
B.-Y.
Ha
,
Phys. Rev. E
70
,
061503
(
2004
).
25.
D.
Henderson
,
L.
Blum
, and
J. L.
Lebowitz
,
J. Electroanal. Chem.
102
,
315
(
1979
).
26.
H.
Wennerstrom
,
B.
Jönsson
, and
P.
Linse
,
J. Chem. Phys.
76
,
4665
(
1982
).
28.
F.
Wang
and
D.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
29.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
London
,
1986
).
30.
M.
Schmidt
and
H.
Löwen
,
Phys. Rev. Lett.
76
,
4552
(
1996
).
33.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
34.
S.-H.
Tsai
,
F.
Wang
, and
D. P.
Landau
,
Braz. J. Phys.
38
,
6
(
2008
).
35.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
66
,
056703
(
2002
).
36.
M.
Troyer
,
S.
Wessel
, and
F.
Alet
,
Phys. Rev. Lett.
90
,
120201
(
2003
).
37.
E. B.
Kim
 et al,
J. Chem. Phys.
117
,
7781
(
2002
).
39.
N.
Rathore
,
Q.
Yan
, and
J. J.
de Pablo
,
J. Chem. Phys.
120
,
5781
(
2004
).
40.
D.
Frenkel
and
B.
Smith
,
Understanding Molecular Simulation
(
Academic
,
San Diego
,
1996
).
41.
Q.
Yan
,
T. S.
Jain
, and
J. J.
de Pablo
,
Phys. Rev. Lett.
92
,
235701
(
2004
).
42.
Though strictly not applicable to the present geometry the Carnahan–Starling equation of state, for volume fractions corresponding to
${\widetilde{D}}\sim 12$
D̃12
also predicts that the hard sphere contribution to the pressure kicks in when the scaled radius is about four.
43.
A.
Moreira
and
R. R.
Netz
,
Phys. Rev. Lett.
87
,
078301
(
2001
).
You do not currently have access to this content.