In two-phase flows, the interface intervening between the two fluid phases intersects the solid wall at the contact line. A classical problem in continuum fluid mechanics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the contact line motion using mechanisms missing from the sharp-interface treatments in fluid mechanics. In one-component two-phase (liquid–gas) systems, the contact line can move through the mass transport across the interface while in two-component (binary) fluids, the contact line can move through diffusive transport across the interface. While these mechanisms alone suffice to remove the stress singularity, the role of fluid slip at solid surface needs to be taken into account as well. In this paper, we apply the diffuse-interface modeling to the study of contact line motion in one-component liquid–gas systems, with the fluid slip fully taken into account. The dynamic van der Waals theory has been presented for one-component fluids, capable of describing the two-phase hydrodynamics involving the liquid–gas transition [A. Onuki, Phys. Rev. E 75, 036304 (2007)]. This theory assumes the local equilibrium condition at the solid surface for density and also the no-slip boundary condition for velocity. We use its hydrodynamic equations to describe the continuum hydrodynamics in the bulk region and derive the more general boundary conditions by introducing additional dissipative processes at the fluid–solid interface. The positive definiteness of entropy production rate is the guiding principle of our derivation. Numerical simulations based on a finite-difference algorithm have been carried out to investigate the dynamic effects of the newly derived boundary conditions, showing that the contact line can move through both phase transition and slip, with their relative contributions determined by a competition between the two coexisting mechanisms in terms of entropy production. At temperatures very close to the critical temperature, the phase transition is the dominant mechanism, for the liquid–gas interface is wide and the density ratio is close to 1. At low temperatures, the slip effect shows up as the slip length is gradually increased. The observed competition can be interpreted by the Onsager principle of minimum entropy production.

1.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
England
,
1967
).
2.
C.
Huh
and
L. E.
Scriven
,
J. Colloid Interface Sci
.
35
,
85
(
1971
).
3.
V. E. B.
Dussan
and
S. H.
Davis
,
J. Fluid Mech
.
65
,
71
(
1974
).
4.
V. E. B.
Dussan
,
Annu. Rev. Fluid Mech
.
11
,
371
(
1979
).
5.
P. G.
de Gennes
,
Rev. Mod. Phys
.
57
,
827
(
1985
).
6.
J.
Koplik
,
J. R.
Banavar
, and
J. F.
Willemsen
,
Phys. Rev. Lett
.
60
,
1282
(
1988
).
7.
P. A.
Thompson
and
M. O.
Robbins
,
Phys. Rev. Lett
.
63
,
766
(
1989
).
8.
T. D.
Blake
, and
J. M.
Haynes
,
J. Colloid Interface Sci
.
30
,
421
(
1969
).
9.
L. M.
Hocking
,
J. Fluid Mech
.
79
,
209
(
1977
).
10.
C.
Huh
and
S. G.
Mason
,
J. Fluid Mech
.
81
,
401
(
1977
).
12.
M. Y.
Zhou
and
P.
Sheng
,
Phys. Rev. Lett
.
64
,
882
(
1990
).
13.
P.
Seppecher
,
Int. J. Eng. Sci
.
34
,
977
(
1996
).
14.
H. Y.
Chen
,
D.
Jasnow
, and
J.
Vinals
,
Phys. Rev. Lett
.
85
,
1686
(
2000
).
16.
L. M.
Pismen
and
Y.
Pomeau
,
Phys. Rev. E
62
,
2480
(
2000
).
17.
A. J.
Briant
and
J. M.
Yeomans
,
Phys. Rev. E
69
,
031603
(
2004
).
18.
L.
Leger
,
J. Phys.: Condens. Matter
15
, S
19
(
2003
).
19.
C.
Neto
,
D. R.
Evans
,
E.
Bonaccurso
,
H. J.
Butt
, and
V. S. J.
Craig
,
Rep. Prog. Phys
.
68
,
2859
(
2005
).
20.
T. Z.
Qian
,
X. P.
Wang
, and
P.
Sheng
,
Phys. Rev. E
68
,
016306
(
2003
).
21.
T. Z.
Qian
,
X. P.
Wang
, and
P.
Sheng
,
Phys. Rev. Lett
.
93
,
094501
(
2004
).
22.
T. Z.
Qian
,
X. P.
Wang
, and
P.
Sheng
,
J. Fluid Mech
.
564
,
333
(
2006
).
23.
T. Z.
Qian
,
C. Y.
Qiu
, and
P.
Sheng
,
J. Fluid Mech
.
611
,
333
(
2008
).
26.
W.
Ren
and
W.
E
,
Phys. Fluids
19
,
022101
(
2007
).
27.
A. J.
Briant
,
A. J.
Wagner
, and
J. M.
Yeomans
,
Phys. Rev. E
69
,
031602
(
2004
).
28.
R.
Borcia
,
I. D.
Borcia
, and
M.
Bestehorn
,
Phys. Rev. E
78
,
066307
(
2008
).
29.
R.
Teshigawara
and
A.
Onuki
,
Europhys. Lett
.
84
,
36003
(
2008
).
30.
A.
Onuki
,
Phys. Rev
. E
75
,
036304
(
2007
).
31.
D. M.
Anderson
,
G. B.
McFadden
, and
A. A.
Wheeler
,
Annu. Rev. Fluid Mech
.
30
,
139
(
1998
).
32.
P. A.
Thompson
and
S. M.
Troian
,
Nature
389
,
360
(
1997
).
33.
J.-L.
Barrat
and
L.
Bocquet
,
Phys. Rev. Lett
.
82
,
4671
(
1999
).
34.
D.
Andrienko
,
B.
Dünweg
, and
O. I.
Vinogradova
,
J. Chem. Phys
.
119
,
13106
(
2003
).
35.
V. E. B
.
Dussan
,
J. Fluid Mech
.
77
,
665
(
1976
).
36.
P.
Sheng
and
M.
Zhou
,
Phys. Rev. A
45
,
5694
(
1992
).
38.
R.
Teshigawara
and
A.
Onuki
,
Phys. Rev. E
82
,
021603
(
2010
).
You do not currently have access to this content.