We present the next stage in a hierarchy of local approximations to complete active space self-consistent field (CASSCF) model in an active space of one active orbital per active electron based on the valence orbital-optimized coupled-cluster (VOO-CC) formalism. Following the perfect pairing (PP) model, which is exact for a single electron pair and extensive, and the perfect quadruples (PQ) model, which is exact for two pairs, we introduce the perfect hextuples (PH) model, which is exact for three pairs. PH is an approximation to the VOO-CC method truncated at hextuples containing all correlations between three electron pairs. While VOO-CCDTQ56 requires computational effort scaling with the 14th power of molecular size, PH requires only sixth power effort. Our implementation also introduces some techniques which reduce the scaling to fifth order and has been applied to active spaces roughly twice the size of the CASSCF limit without any symmetry. Because PH explicitly correlates up to six electrons at a time, it can faithfully model the static correlations of molecules with up to triple bonds in a size-consistent fashion and for organic reactions usually reproduces CASSCF with chemical accuracy. The convergence of the PP, PQ, and PH hierarchy is demonstrated on a variety of examples including symmetry breaking in benzene, the Cope rearrangement, the Bergman reaction, and the dissociation of fluorine.

1.
J.
Paldus
,
P.
Piecuch
,
L.
Pylypow
, and
B.
Jeziorski
,
Phys. Rev. A
47
,
2738
(
1993
).
2.
K.
Jankowski
and
J.
Paldus
,
Int. J. Quantum Chem.
18
,
1243
(
1980
).
4.
D.
Hegarty
and
M. A.
Robb
,
Mol. Phys.
38
,
1795
(
1979
).
5.
K.
Ruedenberg
,
M. W.
Schmidt
,
M. M.
Gilbert
, and
S. T.
Elbert
,
Chem. Phys.
71
,
41
(
1982
).
6.
M.
Dupuis
,
C.
Murray
, and
E. R.
Davidson
,
J. Am. Chem. Soc.
113
,
9756
(
1991
).
7.
V. N.
Staroverov
and
E. R.
Davidson
,
J. Mol. Struct.: THEOCHEM
573
,
81
(
2001
).
8.
M. J.
McGuire
and
P.
Piecuch
,
J. Am. Chem. Soc.
127
,
2608
(
2005
).
9.
J.
Huang
and
M.
Kertesz
,
J. Am. Chem. Soc.
128
,
7277
(
2006
).
10.
M.
Nakata
,
H.
Nakatsuji
,
M.
Ehara
,
M.
Fukuda
,
K.
Nakata
, and
K.
Fujisawa
,
J. Chem. Phys.
114
,
8282
(
2001
).
11.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
113
,
18
(
2000
).
12.
R.
Pollet
,
A.
Savin
,
T.
Leininger
, and
H.
Stoll
,
J. Chem. Phys.
116
,
1250
(
2002
).
13.
L.
Greenman
and
D. A.
Mazziotti
,
J. Chem. Phys.
130
,
184101
(
2009
).
14.
15.
G. K.-L.
Chan
,
M.
Kallay
, and
J.
Gauss
,
J. Chem. Phys.
121
,
6110
(
2004
).
16.
D. A.
Mazziotti
,
J. Chem. Phys.
115
,
8305
(
2001
).
17.
D.
Casanova
,
L. V.
Slipchenko
,
A. I.
Krylov
, and
M.
Head-Gordon
,
J. Chem. Phys.
130
,
044103
(
2009
).
18.
V. A.
Rassolov
and
F.
Xu
,
J. Chem. Phys.
127
,
044104
(
2007
).
19.
F.
Faglioni
and
W.
Goddard
,
Int. J. Quantum Chem.
73
,
1
(
1999
).
20.
A. E.
DePrince
 III
,
E.
Kamarchik
, and
D. A.
Mazziotti
,
J. Chem. Phys.
128
,
234103
(
2008
).
21.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
107
,
6257
(
1997
).
22.
D. W.
Small
and
M.
Head-Gordon
,
J. Chem. Phys.
130
,
084103
(
2009
).
23.
D. A.
Mazziotti
,
Phys. Rev. Lett.
93
,
213001
(
2004
).
24.
G.
Gidofalvi
and
D. A.
Mazziotti
,
J. Chem. Phys.
129
,
134108
(
2008
).
25.
D.
Crawford
and
H. F.
Schaefer
,
Reviews in Computational Chemistry
,
Reviews in Computational Chemistry
(
Wiley-VCH
,
NJ
,
2007
), p.
33
.
26.
R. J.
Bartlett
and
M.
Musial
,
Rev. Mod. Phys.
79
,
291
(
2007
).
27.
T. A.
Ruden
,
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Chem. Phys. Lett.
371
,
62
(
2003
).
28.
T.
Shiozaki
,
K.
Hirao
, and
S.
Hirata
,
J. Chem. Phys.
126
,
244106
(
2007
).
29.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
30.
E.
Byrd
,
T.
Van Voorhis
, and
M.
Head-Gordon
,
J. Phys. Chem. B
106
,
8070
(
2002
).
31.
A. C.
Hurley
,
J.
Lennard-Jones
, and
J. A.
Pople
,
Proc. R. Soc. London, Ser. A
220
,
446
(
1953
).
32.
W. J.
Hunt
,
P. J.
Hay
, and
W. A.
Goddard
,
J. Chem. Phys.
57
,
738
(
1972
).
33.
W. A.
Goddard
and
L. A.
Harding
,
Annu. Rev. Phys. Chem.
29
,
363
(
1978
).
35.
T.
Van Voorhis
and
M.
Head-Gordon
,
Chem. Phys. Lett.
317
,
575
(
2000
).
36.
K. V.
Lawler
,
G. J. O.
Beran
, and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
024107
(
2008
).
37.
A.
Sodt
,
G. J. O.
Beran
,
Y.
Jung
,
B.
Austin
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
2
,
300
(
2006
).
38.
J. A.
Parkhill
,
K.
Lawler
, and
M.
Head-Gordon
,
J. Chem. Phys.
130
,
084101
(
2009
).
39.
S.
Saebo
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
44
,
213
(
1993
).
40.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
41.
H. A.
Witek
,
H.
Nakano
, and
K.
Hirao
,
J. Chem. Phys.
118
,
8197
(
2003
).
42.
B.
Dunietz
,
R. R. B.
Murphy
, and
R. A.
Friesner
,
J. Chem. Phys.
110
,
1921
(
1999
).
44.
A. E.
DePrince
and
D. A.
Mazziotti
,
J. Chem. Phys.
127
,
104104
(
2007
).
45.
D. A.
Mazziotti
,
J. Phys. Chem. A
112
,
13684
(
2008
).
46.
T.
Yanai
and
G. K.-L.
Chan
,
J. Chem. Phys.
127
,
104107
(
2007
).
47.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
,
J. Chem. Phys.
130
,
124102
(
2009
).
48.
D. A.
Mazziotti
,
Phys. Rev. Lett.
97
,
143002
(
2006
).
49.
D. A.
Mazziotti
,
Phys. Rev. A
76
,
052502
(
2007
).
50.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
51.
G. J. O.
Beran
,
M.
Head-Gordon
, and
S. R.
Gwaltney
,
J. Chem. Phys.
124
,
114107
(
2006
).
52.
F. A.
Evangelista
,
A. C.
Simmonett
,
W. D.
Allen
,
H. F.
Schaefer
 III
, and
J.
Gauss
,
J. Chem. Phys.
128
,
124104
(
2008
).
53.
P.
Piecuch
,
N.
Oliphant
, and
L.
Adamowicz
,
J. Chem. Phys.
99
,
1875
(
1993
).
54.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
,
J. Chem. Phys.
110
,
8318
(
1999
).
55.
A.
Köhn
and
J.
Olsen
,
J. Chem. Phys.
122
,
084116
(
2005
).
56.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
57.
K. A.
Brueckner
,
Phys. Rev.
96
,
508
(
1954
).
58.
M.
Nooijen
and
V.
Lotrich
,
J. Chem. Phys.
113
,
4549
(
2000
).
59.
T. D.
Crawford
,
T. J.
Lee
,
N. C.
Handy
, and
H. F.
Schaefer
,
J. Chem. Phys
107
,
9980
(
1997
).
60.
C.
Hampel
,
K.
Peterson
, and
H.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
61.
J.
Olsen
,
J. Chem. Phys.
113
,
7140
(
2000
).
62.
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
115
,
2945
(
2001
).
63.
A. D.
Bochevarov
and
C. D.
Sherrill
,
J. Chem. Phys.
121
,
3374
(
2004
).
64.
S.
Hirata
,
P. -D.
Fan
,
A. A.
Auer
,
M.
Nooijen
, and
P.
Piecuch
,
J. Chem. Phys.
121
,
12197
(
2004
).
65.
J. A.
Parkhill
and
M.
Head-Gordon
,
Mol. Phys.
108
,
513
(
2010
).
66.
See supplementary material at http://dx.doi.org/10.1063/1.3456001 for geometries and equations.
67.
Geometries are provided in the supplement.
68.
T. D.
Crawford
,
C. D.
Sherrill
,
E. F.
Valeev
,
J. T.
Fermann
,
R. A.
King
,
M. L.
Leininger
,
S. T.
Brown
,
C. L.
Janssen
,
E. T.
Seidl
,
J. P.
Kenny
, and
W. D.
Allen
,
J. Comput. Chem.
28
,
1610
(
2007
).
69.
C. L.
Lawson
,
R. J.
Hanson
,
D.
Kincaid
, and
F. T.
Krogh
,
ACM Trans. Math. Softw.
5
,
308
(
1979
).
70.
T.
Yanai
,
Y.
Kurashige
,
D.
Ghosh
, and
G. K.-L.
Chan
,
Int. J. Quantum Chem.
109
,
2178
(
2009
).
71.
H. -J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
74
,
5794
(
1981
).
72.
H. -J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
82
,
5053
(
1985
).
73.
Y.
Kurashige
and
T.
Yanai
,
J. Chem. Phys.
130
,
234114
(
2009
).
74.
T.
Van Voorhis
and
M.
Head-Gordon
,
J. Chem. Phys.
117
,
9190
(
2002
).
75.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Oschsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
, Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C. -P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
, and
A. K.
Chakraborty
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
76.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
77.
G. J. O.
Beran
and
M.
Head-Gordon
,
Mol. Phys.
104
,
1191
(
2006
).
78.
K. V.
Lawler
,
J. A.
Parkhill
, and
M.
Head-Gordon
,
Mol. Phys.
106
,
2309
(
2008
).
79.
D.
Moran
,
A. C.
Simmonett
,
F. E.
Leach
,
W. D.
Allen
,
P. R.
Schleyer
, and
H. F.
Schaefer
,
J. Am. Chem. Soc.
128
,
9342
(
2006
).
80.
We would like to acknowledge T. Van Voorhis for generating these geometries during his Ph.D. and G. Beran for a related conversation. See supporting information (Ref. 66).
81.
O.
Demel
,
K. R.
Shamasundar
,
L.
Kong
, and
M.
Nooijen
,
J. Phys. Chem. A
112
,
11895
(
2008
).
82.
T. D.
Crawford
,
E.
Kraka
,
J. F.
Stanton
, and
D.
Cremer
,
J. Chem. Phys.
114
,
10638
(
2001
).
83.
R. R.
Jones
and
R. G.
Bergman
,
J. Am. Chem. Soc.
94
,
660
(
1972
).
84.
E.
Kraka
,
J.
Anglada
,
A.
Hjerpe
,
M.
Filatov
, and
D.
Cremer
,
Chem. Phys. Lett.
348
,
115
(
2001
).
85.
L. V.
Slipchenko
and
A. I.
Krylov
,
J. Chem. Phys.
117
,
4694
(
2002
).
86.
The coordinates of each point are available in the supplementary information.
87.
F. A.
Evangelista
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys
127
,
024102
(
2007
).
88.
K.
Kowalski
and
P.
Piecuch
,
Chem. Phys. Lett.
344
,
165
(
2001
).
89.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).

Supplementary Material

You do not currently have access to this content.