The one-dimensional penetrable-square-well fluid is studied using both analytical tools and specialized Monte Carlo simulations. The model consists of a penetrable core characterized by a finite repulsive energy combined with a short-range attractive well. This is a many-body one-dimensional problem, lacking an exact analytical solution, for which the usual van Hove theorem on the absence of phase transition does not apply. We determine a high-penetrability approximation complementing a similar low-penetrability approximation presented in previous work. This is shown to be equivalent to the usual Debye–Hückel theory for simple charged fluids for which the virial and energy routes are identical. The internal thermodynamic consistency with the compressibility route and the validity of the approximation in describing the radial distribution function is assessed by a comparison against numerical simulations. The Fisher–Widom line separating the oscillatory and monotonic large-distance behaviors of the radial distribution function is computed within the high-penetrability approximation and compared with the opposite regime, thus providing a strong indication of the location of the line in all possible regimes. The high-penetrability approximation predicts the existence of a critical point and a spinodal line, but this occurs outside the applicability domain of the theory. We investigate the possibility of a fluid-fluid transition by the Gibbs ensemble Monte Carlo techniques, not finding any evidence of such a transition. Additional analytical arguments are given to support this claim. Finally, we find a clustering transition when Ruelle’s stability criterion is not fulfilled. The consequences of these findings on the three-dimensional phase diagrams are also discussed.

1.
C.
Marquest
and
T. A.
Witten
,
J. Phys. (Paris)
50
,
1267
(
1989
).
3.
F. H.
Stillinger
,
J. Chem. Phys.
65
,
3968
(
1976
).
4.
C. N.
Likos
,
M.
Watzalwek
, and
H.
Löwen
,
Phys. Rev. E
58
,
3135
(
1998
).
5.
A.
Santos
,
R.
Fantoni
, and
A.
Giacometti
,
Phys. Rev. E
77
,
051206
(
2008
).
6.
R.
Fantoni
,
A.
Giacometti
,
Al.
Malijevský
, and
A.
Santos
,
J. Chem. Phys.
131
,
124106
(
2009
).
7.
Al.
Malijevský
and
A.
Santos
,
J. Chem. Phys.
124
,
074508
(
2006
).
8.
Al.
Malijevský
,
S. B.
Yuste
, and
A.
Santos
,
Phys. Rev. E
76
,
021504
(
2007
).
9.
J. -P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
Amsterdam
,
2006
).
10.
A.
Santos
,
R.
Fantoni
, and
A.
Giacometti
,
J. Chem. Phys.
131
,
181105
(
2009
).
11.
L.
van Hove
,
Physica (Amsterdam)
16
,
137
(
1950
).
12.
J. A.
Cuesta
and
A.
Sanchez
,
J. Stat. Phys.
115
,
869
(
2004
).
13.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
14.
A. Z.
Panagiotopoulos
,
N.
Quirke
,
M.
Stapleton
, and
D. J.
Tildesley
,
Mol. Phys.
63
,
527
(
1988
).
15.
B.
Smit
,
Ph.
De Smedt
, and
D.
Frenkel
,
Mol. Phys.
68
,
931
(
1989
).
16.
B.
Smit
and
D.
Frenkel
,
Mol. Phys.
68
,
951
(
1989
).
17.
R.
Fantoni
and
M.
Kastner
, “
Non-existence of a Phase Transition for the Penetrable Square Wells in One Dimension
,”
JSTAT
(submitted).
18.
M.
Kastner
,
Rev. Mod. Phys.
80
,
167
(
2008
).
19.
M. E.
Fisher
and
B.
Widom
,
J. Chem. Phys.
50
,
3756
(
1969
).
20.
L.
Acedo
and
A.
Santos
,
Phys. Lett. A
323
,
427
(
2004
).
21.
A.
Santos
,
J. Chem. Phys.
126
,
116101
(
2007
).
22.
C. N.
Likos
,
A.
Lang
,
M.
Watzlawek
, and
H.
Löwen
,
Phys. Rev. E
63
,
031206
(
2001
).
23.
C. N.
Likos
,
B. M.
Mladek
,
D.
Gottwald
, and
G.
Kahl
,
J. Chem. Phys.
126
,
224502
(
2007
).
24.
MC results were obtained from a standard NVT ensemble calculation with periodic boundary conditions. We used N=500 particles and 106 MC steps, which were checked to be sufficient for a good accuracy.
25.
C.
Vega
,
L. F.
Rull
, and
S.
Lago
,
Phys. Rev. E
51
,
3146
(
1995
).
26.
M. E.
Fisher
and
D.
Ruelle
,
J. Math. Phys.
7
,
260
(
1966
).
27.
D.
Ruelle
,
Statistical Mechanics: Rigorous Results
(
Benjamin
,
London
,
1969
).
28.
W. G. T.
Kranendonk
and
D.
Frenkel
,
Mol. Phys.
64
,
403
(
1988
).
29.
N.
Grewe
and
W.
Klein
,
J. Math. Phys.
18
,
1729
(
1977
);
N.
Grewe
and
W.
Klein
,
J. Math. Phys.
18
,
1735
(
1977
);
W.
Klein
and
N.
Grewe
,
J. Chem. Phys.
72
,
5456
(
1980
).
You do not currently have access to this content.